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Abstract: Recent studies of software defect prediction typically 

produce datasets, methods and frameworks which allow 

software engineers to focus on development activities in terms 

of defect-prone code, thereby improving software quality and 

making better use of resources. Many software defect 

prediction datasets, methods and frameworks are published 

disparate and complex, thus a comprehensive picture of the 

current state of defect prediction research that exists is missing. 

This literature review aims to identify and analyze the research 

trends, datasets, methods and frameworks used in software 

defect prediction research betweeen 2000 and 2013. Based on 

the defined inclusion and exclusion criteria, 71 software defect 

prediction studies published between January 2000 and 

December 2013 were remained and selected to be investigated 

further. This literature review has been undertaken as a 

systematic literature review. Systematic literature review is 

defined as a process of identifying, assessing, and interpreting 

all available research evidence with the purpose to provide 

answers for specific research questions. Analysis of the 

selected primary studies revealed that current software defect 

prediction research focuses on five topics and trends: 

estimation, association, classification, clustering and dataset 

analysis. The total distribution of defect prediction methods is 

as follows. 77.46% of the research studies are related to 

classification methods, 14.08% of the studies focused on 

estimation methods, and 1.41% of the studies concerned on 

clustering and association methods. In addition, 64.79% of the 

research studies used public datasets and 35.21% of the 

research studies used private datasets. Nineteen different 

methods have been applied to predict software defects. From 

the nineteen methods, seven most applied methods in software 

defect prediction are identified. Researchers proposed some 

techniques for improving the accuracy of machine learning 

classifier for software defect prediction by ensembling some 

machine learning methods, by using boosting algorithm, by 

adding feature selection and by using parameter optimization 

for some classifiers. The results of this research also identified 

three frameworks that are highly cited and therefore influential 

in the software defect prediction field. They are Menzies et al. 

Framework, Lessmann et al. Framework, and Song et al. 

Framework. 

 

Keywords: systematic literature review, software defect 

prediction, software defect prediction methods, NASA MDP 

datasets 

 

1 INTRODUCTION 

A software defect is a fault, error, or failure in a 

software (Naik and Tripathy 2008). It produces either an 

incorrect, or unexpected result, and behaves in unintended 

ways. It is a deficiency in a software product that causes it to 

perform unexpectedly (McDonald, Musson, & Smith, 2007). 

The definition of a defect is also best described by using the 

standard IEEE definitions of error, defect and failure (IEEE, 

1990). An error is an action taken by a developer that results in 

a defect. A defect is the manifestation of an error in the code 

whereas a failure is the incorrect behavior of the system during 

execution. A developer error can also be defined as a mistake. 

As today’s software grows rapidly in size and complexity, 

software reviews and testing play a crucial role in the software 

development process, especially in capturing software defects. 

Unfortunately, software defects or software faults are very 

expensive in cost. Jones and Bonsignour (2012) reported that 

the cost of finding and correcting defects is one of the most 

expensive software development activities (Jones and 

Bonsignour 2012). The cost of software defect increases over 

the software development step. During the coding step, 

capturing and correcting defects costs $977 per defect. The cost 

increases to $7,136 per defect in the software testing phase. 

Then in the maintenance phase, the cost to capture and remove 

increases to $14,102 (Boehm and Basili 2001). 

Software defect prediction approaches are much more cost-

effective to detect software defects as compared to software 

testing and reviews. Recent studies report that the probability 

of detection of software defect prediction models may be 

higher than probability of detection of currently software 

reviews used in industrial methods (Menzies et al., 2010). 

Therefore, accurate prediction of defect‐prone software helps 

to direct test effort, to reduce costs, to improve the software 

testing process by focusing on defect-prone modules (Catal, 

2011), and finally to improve the quality of the software (T. 

Hall, Beecham, Bowes, Gray, & Counsell, 2012). That is why, 

today software defect prediction is a significant research topic 

in the software engineering field (Song, Jia, Shepperd, Ying, & 

Liu, 2011). 

Many software defect prediction datasets, methods and 

frameworks are published disparate and complex, thus a 

comprehensive picture of the current state of defect prediction 

research that exists is missing. This literature review aims to 

identify and analyze the research trends, datasets, methods and 

frameworks used in software defect prediction research 

betweeen 2000 and 2013.  

This paper is organized as follows. In section 2, the 

research methodology are explained. The results and answers 

of research questions are presented in section 3. Finally, our 

work of this paper is summarized in the last section. 

 

2 METHODOLOGY 

2.1 Review Method 

A systematic approach for reviewing the literature on the 

software defect prediction is chosen. Systematic literature 

reviews (SLR) is now a well established review method in 

software engineering. An SLR is defined as a process of 
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identifying, assessing, and interpreting all available research 

evidence with the purpose to provide answers for specific 

research questions (Kitchenham and Charters 2007). This 

literature review has been undertaken as a systematic literature 

review based on the original guidelines proposed by 

Kitchenham and Charters (2007). The review method, style 

and some of the figures in this section were also motivated by 

(Unterkalmsteiner et al., 2012) and  (Radjenović, Heričko, 

Torkar, & Živkovič, 2013).  

As shown in Figure 1, SLR is performed in three stages: 

planning, conducting and reporting the literature review. In the 

first step the requirements for a systematic review are 

identified (Step 1). The objectives for performing the literature 

review were discussed in the introduction of this chapter. Then, 

the existing systematic reviews on software defect prediction 

are identified and reviewed. The review protocol was designed 

to direct the execution of the review and reduce the possibility 

of researcher bias (Step 2). It defined the research questions, 

search strategy, study selection process with inclusion and 

exclusion criteria, quality assessment, and finally data 

extraction and synthesis process. The review protocol is 

presented in Sections 2.2, 2.3, 2.4 and 2.5. The review protocol 

was developed, evaluated and iteratively improved during the 

conducting and reporting stage of the review. 

 

PLANNING

STAGE

Start

Step 1: Identify the need for a 

systematic review 

Step 2: Develop review 

protocol 

Step 3: Evaluate review 

protocol 

CONDUCTING

STAGE

Step 4: Search for primary 

studies 

Step 5: Select primary studies

Step 6: Extract data from 

primary studies 

Step 7: Assess quality of 

primary studies 

Step 8: Synthesize data 

REPORTING

STAGEStep 9: Disseminate results 

End

  
 

Figure 1 Systematic Literature Review Steps 

2.2 Research Questions 

The research questions (RQ) were specified to keep the 

review focused. They were designed with the help of the 

Population, Intervention, Comparison, Outcomes, and Context 

(PICOC) criteria (Kitchenham and Charters 2007). Table 1 

shows the (PICOC) structure of the research questions. 

 
Table 1 Summary of PICOC 

Population Software, software application, software system, 

information system 

Intervention Software defect prediction, fault prediction, error-

prone, detection, classification, estimation, models, 

methods, techniques, datasets 

Comparison n/a 

Outcomes Prediction accuracy of software defect, successful 

defect prediction methods 

Context Studies in industry and academia, small and large data 

sets 

 

The research questions and motivation addressed by this 

literature review are shown in Table 2.  

 
Table 2 Research Questions on Literature Review 

ID Research Question Motivation 

RQ1 Which journal is the most 

significant software defect 

prediction journal? 

Identify the most significant 

journals in the software defect 

prediction field 

RQ2 Who are the most active and 
influential researchers in the 

software defect prediction 

field? 

Identify the most active and 
influential researchers who 

contributed so much on a 

research area of software defect 
prediction 

RQ3 What kind of research topics 

are selected by researchers in 
the software defect prediction 

field? 

Identify research topics and 

trends in software defect 
prediction 

RQ4 What kind of datasets are the 
most used for software defect 

prediction? 

Identify datasets commonly 
used in software fault prediction 

RQ5 What kind of methods are 

used for software defect 
prediction? 

Identify opportunities and 

trends for software defect 
prediction method 

RQ6 What kind of methods are 

used most often for software 
defect prediction? 

Identify the most used methods 

for software defect prediction 

RQ7 Which method performs best 

when used for software defect 

prediction? 

Identify the best method in 

software defect prediction 

RQ8 What kind of method 

improvements are proposed 

for software defect 
prediction? 

Identify the proposed method 

improvements for predicting the 

software defect 

RQ9 What kind of frameworks are 

proposed for software defect 

prediction? 

Identify the most used 

frameworks in software defect 

prediction 

 

From the primary studies, software prediction methods, 

frameworks and datasets to answer RQ4 to RQ9 are extracted. 

Then, the software defect prediction methods, frameworks and 

datasets were analyzed to determine which ones are, and which 

are not, significant methods, frameworks and datasets in 

software defect prediction (RQ4 to RQ9). RQ4 to RQ9 are the 

main research questions, and the remaining questions (RQ1 to 

RQ3) help us evaluate the context of the primary studies. RQ1 

to RQ3 give us a summary and synopsis of a particular area of 

research in software defect prediction field. 

Figure 2 shows the basic mind map of the systematic 

literature review. The main objective of this systematic 

literature review is to identify software prediction methods, 

framework and datasets used in software defect prediction. 
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Figure 2 Basic Mind Map of the SLR on Software Defect Prediction 

2.3 Search Strategy  

The search process (Step 4) consists of some activities, 

such as selecting digital libraries, defining the search string, 

executing a pilot search, refining the search string and 

retrieving an initial list of primary studies from digital libraries 

matching the search string. Before starting the search, an 

appropriate set of databases must be chosen to increase the 

probability of finding highly relevant articles. The most 

popular literature databases in the field are searched to have the 

broadest set of studies possible. A broad perspective is 

necessary for an extensive and broad coverage of the literature. 

Here is the list of the digital databases searched: 

 ACM Digital Library (dl.acm.org) 

 IEEE eXplore (ieeexplore.ieee.org) 

 ScienceDirect (sciencedirect.com) 

 Springer (springerlink.com) 

 Scopus (scopus.com) 

 

The search string was developed according to the 

following steps: 

1. Identification of the search terms from PICOC, 

especially from Population and Intervention 

2. Identification of search terms from research questions 

3. Identification of search terms in relevant titles, 

abstracts and keywords 

4. Identification of synonyms, alternative spellings and 

antonyms of search terms 

5. Construction of sophisticated search string using 

identified search search terms, Boolean ANDs and 

ORs 

 

The following search string was eventually used: 

  

(software OR applicati* OR systems ) AND (fault* OR 

defect* OR quality OR error-prone) AND (predict* 

OR prone* OR probability OR assess* OR detect* OR 

estimat* OR classificat*)  

 

The adjustment of the search string was conducted, but the 

original one was kept, since the adjustment of the search string 

would dramatically increase the already extensive list of 

irrelevant studies. The search string was subsequently adjusted 

to suit the specific requirements of each database. The 

databases were searched by title, keyword and abstract. The 

search was limited by the year of publication: 2000-2013. Two 

kinds of publication namely journal papers and conference 

proceedings were included. The search was limited only 

articles published in English. 

 

2.4 Study Selection 

The inclusion and exclusion criteria were used for 

selecting the primary studies,. These criteria are shown in 

Table 3.  
Table 3 Inclusion and Exclusion Criteria 

Inclusion 

Criteria 

Studies in academic and industry using large and small 
scale data sets 

Studies discussing and comparing modeling performance 

in the area of software defect prediction 

For studies that have both the conference and journal 
versions, only the journal version will be included 

For duplicate publications of the same study, only the most 

complete and newest one will be included 

Exclusion 

Criteria 

Studies without a strong validation or including 
experimental results of software defect prediction 

Studies discussing defect prediction datasets, methods, 

frameworks in a context other than software defect 
prediction 

Studies not written in English 

 

Software package Mendeley (http://mendeley.com) was 

used to store and manage the search results. The detailed search 

process and the number of studies identified at each phase are 

shown in Figure 3. As shown in Figure 3, the study selection 

process (Step 5) was conducted in two steps: the exclusion of 

primary studies based on the title and abstract and the exclusion 

of primary studies based on the full text. The literature review 

studies and other studies which do not include experimental 

results are excluded. The similarity degree of the study with 

software defect prediction is also the inclusion of studies. 

  

Start

Select digital libraries

Define search string

Execute pilot search

Refine search string

Retrieve initial list of primary 

studies

(2117)

yes

Exclude primary studies based on 

title and abstract

(213)

Exclude primary studies based on 

full text

 (71)

Make a final list of included 

primary studies

(71)

End

Majority of 

known primary 

studies found?

no

Digital 

Libraries

 ACM Digital Library (474)

 IEEE Explore  (785)

 ScienceDirect  (276)

 SpringerLink  (339)

 Scopus  (243)

 
Figure 3 Search and Selection of Primary Studies 
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The final list of selected primary studies for the first stage 

had 71 primary studies. Then, the full texts of 71 primary 

studies were analyzed. In addition to the inclusion and 

exclusion criteria, the quality of the primary studies, their 

relevance to the research questions and study similarity were 

considered. Similar studies by the same authors in various 

journals were removed. 71 primary studies remained after the 

exclusion of studies based on the full text selection. The 

complete list of selected studies is provided in last section 

section of this paper (Table 6). 

 

2.5 Data Extraction 

The selected primary studies are extracted to collect the 

data that contribute to addressing the research questions 

concerned in this review. For each of the 71 selected primary 

studies, the data extraction form was completed (Step 6). The 

data extraction form was designed to collect data from the 

primary studies needed to answer the research questions. The 

properties were identified through the research questions and 

analysis we wished to introduce. Six properties were used to 

answer the research questions shown in Table 4. The data 

extraction is performed in an iterative manner. 
 

Table 4 Data Extraction Properties Mapped to Research Questions 

Property Research Questions 

Researchers and Publications RQ1, RQ2 

Research Trends and Topics RQ3 

Software Defect Datasets RQ4 

Software Metrics RQ4 

Software Defect Prediction Methods RQ5, RQ6, RQ7, RQ8 

Software Defect Prediction Frameworks RQ9 

 

2.6 Study Quality Assessment and Data Synthesis 

The study quality assessment (Step 8) can be used to guide 

the interpretation of the synthesis findings and to define the 

strength of the elaborated inferences. The goal of data synthesis 

is to aggregate evidence from the selected studies for 

answering the research questions. A single piece of evidence 

might have small evidence force, but the aggregation of many 

of them can make a point stronger. The data extracted in this 

review include both quantitative data and qualitative data. 

Different strategies were employed to synthesize the extracted 

data pertaining to different kinds of research questions. 

Generally, the narrative synthesis method was used. The data 

were tabulated in a manner consistent with the questions. Some 

visualization tools, including bar charts, pie charts, and tables 

were also used to enhance the presentation of the distribution 

of software defect prediction methods and their accuracy data. 

 

2.7 Threats to Validity 

This review aims to analyze the studies on software defect 

prediction based on statistical and machine learning 

techniques. This review is not aware about the existence of 

biases in choosing the studies. The searching was not based on 

manual reading of titles of all published papers in journals. 

This means that this review may have excluded some software 

defect prediction papers from some conference proceedings or 

journals. 

This review did not exclude studies from conference 

proceedings because experience reports are mostly published 

in conference proceedings. Therefore, a source of information 

about the industry’s experience is included. Some systematic 

literature reviews, for example (Jorgensen and Shepperd 2007) 

did not use conference proceedings in their review because 

workload would increase significantly. A systematic literature 

review that included studies in conference proceedings as the 

primary studies is conducted by Catal and Diri (Catal and Diri 

2009a). 

 

3 RESEARCH RESULTS 

3.1 Significant Journal Publications 

In this literature review, 71 primary studies that analyze 

the performance of software defect prediction are included. 

The distribution over the years is presented to show how the 

interest in software defect prediction has changed over time. A 

short overview of the distribution studies over the years is 

shown in Figure 4. More studies were published since 2005, 

indicating that more contemporary and relevant studies are 

included. It should be noted that the PROMISE repository was 

developed in 2005, and researchers began to be aware of the 

use of public datasets. Figure 4 also shows that the research 

field on software defect prediction is still very much relevant 

today. 

 

 
Figure 4 Distribution of Selected Studies over the Years 

According to the selected primary studies, the most 

important software defect prediction journals are displayed in 

Figure 5. Note that the conference proceedings are not included 

in this graph. 

  

 
Figure 5 Journal Publications and Distribution of Selected Studies 

Table 5 shows the Scimago Journal Rank (SJR) value and 

Q categories (Q1-Q4) of the most important software defect 

prediction journals. Journal publications are ordered according 

to their SJR value. 
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Table 5 Scimago Journal Rank (SJR) of Selected Journals 

No Journal Publications SJR Q Category 

1 IEEE Transactions on Software 

Engineering 

3.39 Q1 in Software 

2 Information Sciences 2.96 Q1 in Information 

Systems 

3 IEEE Transactions on Systems, 
Man, and Cybernetics 

2.76 Q1 in Artificial 
Intelligence 

4 IEEE Transactions on Knowledge 

and Data Engineering 

2.68 Q1 in Information 

Systems 

5 Empirical Software Engineering 2.32 Q1 in Software 

6 Information and Software 
Technology 

1.95 Q1 in Information 
Systems 

7 Automated Software Engineering 1.78 Q1 in Software 

8 IEEE Transactions on Reliability 1.43 Q1 in Software 

9 Expert Systems with Applications 1.36 Q2 in Computer 
Science 

10 Journal of Systems and Software 1.09 Q2 in Software 

11 Software Quality Journal 0.83 Q2 in Software 

12 IET Software 0.55 Q2 in Software 

13 Advanced Science Letters 0.24 Q3 in Computer 
Science 

14 Journal of Software 0.23 Q3 in Software 

15 International Journal of Software 

Engineering and Its Application 

0.14 Q4 in Software 

 

3.2 Most Active and Influential Researchers 

From the selected primary studies, researchers who 

contributed very well and who are very active in the software 

defect prediction research field were investigated and 

identified. Figure 6 shows the most active and influential 

researchers in the software defect prediction field. The 

researchers were listed according to the number of studies 

included in the primary studies. It should be noted that Taghi 

Khoshgoftaar, Tim Menzies, Qinbao Song, Martin Shepperd, 

Norman Fenton, Cagatay Catal, Burak Turhan, Ayse Bener, 

Huanjing Wang, Yan Ma, Bojan Cukic, and Ping Guo are 

active researchers on software defect prediction. 

 

 
Figure 6 Influential Researchers and Number of Studies  

3.3 Research Topics in the Software Defect Prediction Field 

Software defect prediction is a significant research topic 

in the software engineering field (Song et al., 2011). Analysis 

of the selected primary studies revealed that current software 

defect prediction research focuses on five topics: 

1. Estimating the number of defects remaining in 

software systems, using the estimation algorithm 

(Estimation) 

2. Discovering defect associations using the association 

rule algorithm (Association) 

3. Classifying the defect-proneness of software modules 

typically into two classes namely defect-prone and 

not defect-prone using the classification algorithm 

(Classification) 

4. Clustering the software defect based on object using 

the clustering algorithm (Clustering) 

5. Analyzing and pre-processing the software defect 

datasets (Dataset Analysis) 

 

The first type of work (Estimation) applies statistical 

approaches (Ostrand, Weyuker, & Bell, 2005), capture-

recapture models (Emam and Laitenberger 2001), and neural 

network (Benaddy and Wakrim 2012) (Zhang and Chang 

2012) to estimate the number of defects remaining in softwares 

with inspection data and process quality data. The prediction 

result can be used as an important tool to help software 

developers (Kenny, 1993), and can be used to control the 

software process and gauge the likely delivered quality of a 

software system (Fenton and Neil 1999). 

The second type of work (Association) uses association 

rule mining algorithms from the data mining community to 

expose software defect associations (Shepperd, Cartwright, & 

Mair, 2006) (Karthik and Manikandan 2010) (C.-P. Chang, 

Chu, & Yeh, 2009). This second type of work can be used for 

three purposes (Song et al., 2011). Firstly, to find as many 

related defects as possible to the captured defects and 

consequently, make more effective improvements to the 

software. This may be useful as it permits more focused testing 

and more effective use of limited testing resources. Secondly, 

to evaluate the results from software reviewers during an 

inspection. Thus, the work should be reinspected for 

completeness. Thirdly, to assist software development 

managers in improving the software development process 

through analysis of the reasons why some defects frequently 

occur together. Managers can than devise corrective action, if 

the analysis leads to the identification of a process problem. 

The third type of work (Classification) classifies software 

modules as defect-prone and non-defect-prone by means of 

metric based classification (Khoshgoftaar et al. 2000) (Li and 

Reformat 2007) (Cukic and Singh 2004) (Menzies, Greenwald, 

& Frank, 2007) (Lessmann, Baesens, Mues, & Pietsch, 2008) 

(Song et al., 2011). The classification algorithm is a popular 

machine learning approach for software defect prediction 

(Lessmann et al., 2008). It categorizes the software code 

attributes into defective or not defective, which is completed 

by means of a classification model derived from software 

metrics data based on the previous development projects 

(Gayatri, Reddy, & Nickolas, 2010). The classification 

algorithm is able to predict which components are more likely 

to be defect-prone which supports a better targeted testing 

resources. If an error is reported during system tests or from 

field tests, that module’s fault data is marked as 1, otherwise 0. 

For prediction modeling, software metrics are used as 

independent variables and fault data is used as the dependent 

variable (Catal, 2011). Parameters of the prediction model are 

computed by using previous software metrics and fault data. 

Various types of classification algorithms have been applied 

for software defect prediction (Lessmann et al., 2008), 

including logistic regression (Denaro, 2000), decision trees 

(Khoshgoftaar and Seliya, 2002) (Taghi M Khoshgoftaar, 

Seliya, & Gao, 2005), neural networks (Park, Oh, & Pedrycz, 

2013) (Wang and Yu 2004) (Zheng, 2010), and naive bayes 

(Menzies et al., 2007).  

The fourth type of work (Clustering) uses clustering 

algorithms from the data mining community to capture 

software defect clusters. Unsupervised learning methods like 

clustering may be used for defect prediction in software 

modules, more so in those cases where fault labels are not 

available. The K-Means algorithm was proposed by Bishnu 
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and Bhattacherjee (2012) for predicting defect in program 

modules (Bishnu and Bhattacherjee 2012). Quad Trees are 

applied for finding the initial cluster centers to be the input to 

the K-Means Algorithm. The concept of clustering gain has 

been used to define the quality of clusters for measuring the 

Quad Tree-based initialization algorithm. The clusters 

generated by the Quad Tree-based algorithm were found to 

have maximum gain values (Bishnu and Bhattacherjee 2012).  

The fifth type of work (Dataset Analysis) focuses on 

analyzing and pre-processing the software defect datasets. 

Some researchers conducted the dataset pre-processing using 

some methods, while others analyzed software defect datasets 

in multiple aspect of views. (Gray, Bowes, Davey, Sun, & 

Christianson, 2012) demonstrated and explained why NASA 

MDP datasets require significant pre-processing in order to be 

suitable for defect prediction. They noted that the bulk of 

defect prediction experiments based on the NASA Metrics 

Data Program datasets may have led to erroneous findings. 

This is mainly due to repeated data points potentially caused 

by redundancy in the amount of training and testing data. 

Figure 7 shows the total distribution of research topics on 

software defect prediction from 2000 until 2013. 77.46% of the 

research studies are related to classification topics, 14.08% of 

the studies focused on estimation techniques, and 5.63% of the 

primary studies are concerned with dataset analysis topics. 

Clustering and association are minor research topics with only 

1.41% coverage. It can be concluded that most of the software 

defect prediction researchers selected classification as their 

research topics. There are three possible reasons of why 

researchers focus on this topic. As the first reason, 

classification topics precisely match with the industrial needs 

that require some methods to predict which modules are more 

likely to be defect-prone. Thus, the result of prediction can be 

used to support better targeted testing resources. The second 

reason is related to the NASA MDP dataset that is mostly ready 

for classification methods. The third possible reason for a lack 

of studies in clustering and association related topics is that 

clustering and association methods usually yield undesirable 

performance which cannot be published in the literature. 

 

 
 

Figure 7 Distribution of Research Topics 

3.4 Datasets Used for Software Defect Prediction 

A dataset is a collection of data used for some specific 

machine learning purpose (Sammut and Webb 2011). A 

training set is a data set that is used as input to a learning 

system, which analyzes it to learn a model. A test set or 

evaluation set is a data set containing data that are used to 

evaluate the model learned by a learning system. A training set 

may be further divided into a growing set and a pruning set, 

where the training set and the test set that contain disjoint sets 

of data, the test set is known as a holdout set. 

One of the most critical problems for software defect 

prediction studies is the usage of non-public datasets (Catal and 

Diri 2009a). Numerous companies developed defect prediction 

models using proprietary data and presented these models in 

conferences. However, it is impossible to compare results of 

such studies with results of the proposed models, because their 

datasets cannot be assesed. Machine learning researchers had 

similar problems in the 1990s, and they developed a repository 

called University of California Irvine (UCI). Inspired by the 

UCI effort, software engineering researchers developed the 

PROMISE repository which has numerous public datasets in 

2005. NASA software defect prediction datasets are located in 

PROMISE. The ARFF format is used as a default format file 

that makes it possible to use these datasets directly from 

WEKA or RapidMiner, an open source machine learning 

software.  

In this literature review, 71 primary studies that analyzed 

the performance of software defect prediction are included. 

Figure 8 shows the distribution of dataset types from 2000 until 

2013. 64.79% of the research studies used public datasets and 

35.21% of the research studies used private datasets. Public 

datasets are mostly located in the PROMISE and NASA MDP 

(metrics data program) repositories and they are distributed 

freely. Private datasets belong to private companies and they 

are not distributed as public datasets. 

 

 
 

Figure 8 Total Distribution of Datasets 

The distribution over the years is presented to show how 

the interest in dataset types has changed over time. 

Unfortunately, totally 35.21% of the studies used private 

datasets. This means that only the result of one study from three 

studies can be compared and it is repeatable. However, it is not 

possible to compare the results of such studies with the results 

of the proposed models because their datasets are not 

distributed as public. The use of standard datasets make the 

research repeatable, refutable, and verifiable (Catal and Diri 

2009a). The distribution of the primary studies over the years, 

and per source, is presented in Figure 9. More studies have 

been published, and more public datasets have been used for 

the software defect prediction research since 2005. As 

mentioned earlier, the PROMISE repository was developed in 

2005. In addition, there is increased awareness among 

researchers on the use of public datasets. 
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Figure 9 Distribution of Private and Public Datasets 

3.5 Methods Used in Software Defect Prediction  

As shown in Figure 10, since 2000, nineteen methods have 

been applied and proposed as the best method to predict 

software defects. A summary of the state-of-the-art methods 

used in software defect prediction is shown in Figure 10 and 

Table 6. 

 

 
 

Figure 10 Methods Used in Software Defect Prediction 

3.6 Most Used Methods in Software Defect Prediction  

From the nineteen methods shown in Figure 10 in Section 

3.5, seven most applied classification methods in software 

defect prediction are identified. The methods are shown in 

Figure 11. They are: 

1. Logistic Regression (LR) 

2. Naïve Bayes (NB) 

3. K-Nearest Neighbor (k-NN) 

4. Neural Network (NN) 

5. Decision Tree (DT) 

6. Support Vector Machine (SVM) 

7. Random Forest (RF) 

 
 

Figure 11 Most Used Methods in Software Defect Prediction 

NB, DT, NN and RF are the four most frequently used 

ones. They were adopted by 75% of the selected studies, as 

illustrated in Figure 12. 

 

 
 

Figure 12 Distribution of the Studies over Type of Methods 

3.7 Method Perform Best for Software Defect Prediction 

While many studies in the software defect prediction 

individually report the comparative performance of the 

modelling techniques used, there is no strong consensus on 

which performs best when the studies are looked at individual. 

Bibi et al. (Bibi, Tsoumakas, Stamelos, & Vlahavas, 2008) 

have reported that Regression via Classification (RvC) works 

very well. Hall et al. highlighted that studies using Support 

Vector Machine (SVM) perform less well. These may be 

performing bellow expectation as they require parameter 

optimization for the best performance (T. Hall et al., 2012). 

C4.5 seems to perform bellow expectation if they include 

imbalanced class distribution of datasets, as the algorithm 

seems to be sensitive to this (Arisholm, Briand, & Fuglerud, 

2007) (Arisholm, Briand, & Johannessen, 2010).  

Naïve Bayes (NB) and Logistic Regression (LR) seem to 

be the methods used in models that performs relatively well in 

the field of software defect prediction (Menzies et al., 2007) 

(Song et al., 2011). NB is a well understood algorithm and 

commonly in use. Studies using Random Forests (RF) did not 

perform as well as expected (T. Hall et al., 2012). However, 

many studies using the NASA dataset employ RF and report 

good performanc (Lessmann et al., 2008).  

Some studies on software defect prediction indicated that 

Neural Network (NN) has a good accuracy as a classifier 

(Lessmann et al., 2008) (Benaddy and Wakrim 2012) (Quah, 

Mie, Thwin, & Quah, 2003) (T M Khoshgoftaar, Allen, 

Hudepohl, & Aud, 1997). NN has been shown to be more 

adequate for the problem on the complicated and nonlinear 

relationship between software metrics and defect-proneness of 
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software modules (Zheng 2010). However, the practicability of 

NN is limited due to difficulty in selecting appropriate 

parameters of network architecture, including number of 

hidden neuron, learning rate, momentum and training cycles 

(Lessmann et al., 2008). 

However, models seem to have performed best where the 

right technique has been selected for the right set of data. No 

particular classifiers that performs the best for all the datasets 

(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011). 

Therefore, the comparisons and benchmarking results of defect 

prediction using machine learning classifiers indicate that the 

poor accuracy level is dominant (Sandhu, Kumar, & Singh, 

2007) (Lessmann et al., 2008), significant performance 

differences could not be detected (Lessmann et al., 2008) and 

no particular classifiers perform the best for all the datasets 

(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011).  

 

3.8 Proposed Method Improvements for Software Defect 

Prediction 

Researchers proposed some techniques for improving the 

accuracy of machine learning classifier for software defect 

prediction. Recent proposed techniques try to increase the 

prediction accuracy of a generated model by: 1) modifying and 

ensembling some machine learning methods (Mısırlı, Bener, & 

Turhan, 2011) (Tosun, Turhan, & Bener, 2008), 2) using 

boosting algorithm (Zheng, 2010) (Jiang, Li, Zhou, & Member, 

2011), 3) adding feature selection (Gayatri et al. 2010) 

(Khoshgoftaar and Gao, 2009) (Catal and Diri 2009b) (Song et 

al., 2011), 4) by using parameter optimization for some 

classifiers (Peng and Wang 2010) (Lin, Ying, Chen, & Lee, 

2008) (X. C. Guo, Yang, Wu, Wang, & Liang, 2008).  

However, eventhough various defect prediction methods 

have been proposed, but none  has been proven to be 

consistently accurate (Challagulla et al., 2005) (Lessmann et 

al., 2008). The accurate and reliable classification algorithm to 

build a better prediction model is an open issue in software 

defect prediction. There is a need for an accurate defect 

prediction framework which has to be more robust to noise and 

other problems associated with on datasets.  

 

3.8.1 Feature Selection 

Feature selection is the study of algorithms for reducing 

dimensionality of data to improve machine learning 

performance. For a dataset with N features and M dimensions 

(or features, attributes), feature selection aims to reduce M to 

M’ and M’ ≤ M (Sammut and Webb 2011). It is an important 

and widely used approach to dimensionality reduction. 

Another effective approach is feature extraction. One of the 

key distinctions of the two approaches lies at their outcomes. 

Assuming we have four features F1, F2, F3, F4, if both 

approaches result in 2 features, the 2 selected features are a 

subset of 4 original features (say, F1, F3), but the 2 extracted 

features are some combination of the 4 original features. 

Feature selection is commonly used in applications where 

original features need to be retained. Some examples are 

document categorization, medical diagnosis and prognosis as 

well as gene-expression profiling. The benefits of feature 

selection are multifold: it helps improve machine learning in 

terms of predictive accuracy, comprehensibility, learning 

efficiency, compact models, and effective data collection. The 

objective of feature selection is to remove irrelevant and/or 

redundant features and retain only relevant features (Maimon 

and Rokach 2010). Some researchers called irrelevant and 

redundant feature by noisy attribute (Khoshgoftaar and Van 

Hulse 2009). Irrelevant features can be removed without 

affecting learning performance. Redundant features are a type 

of irrelevant features. The distinction is that a redundant feature 

implies the copresence of another feature; individually, each 

feature is relevant, but the removal of either one will not affect 

learning performance. 

Three classic methods of feature selection are filter, 

wrapper, and embedded. Research shows that a classifier with 

embedded feature selection capability can beneft from feature 

selection in terms of learning performance. A filter model 

relies on measures about the intrinsic data properties. Mutual 

information and data consistency are two examples of 

measures about data properties. A wrapper model involves a 

learning algorithm (classifier) in determining the feature 

quality. For instance, if removing a feature does not affect the 

classifier’s accuracy, the feature can be removed. Obviously, 

this way feature selection is adapted to improving a particular 

classification algorithm. To determine if the feature should be 

selected or removed, it needs to build a classifier every time 

when a feature is considered. Hence, the wrapper model can be 

quite costly. An embedded model embeds feature selection in 

the learning of a classifier. The best example can be found in 

decision tree induction in which a feature has to be selected 

first at each brainching point. When feature selection is 

performed for data preprocessing, fillter and wrapper models 

are often employed. When the purpose of feature selection goes 

beyond improving learning performance (e.g., classifcation 

accuracy), the most applied is the filter model. 

 

3.8.2 Ensemble Machine Learning 

Ensemble learning refers to the procedures employed to 

train multiple learning machines and combine their outputs, 

treating them as a “committee” of decision makers (Sammut 

and Webb 2011). The principle is that the decision of the 

committee, with individual predictions combined 

appropriately, should have better overall accuracy, on average, 

than any individual committee member. Numerous empirical 

and theoretical studies have demonstrated that ensemble 

models very often attain higher accuracy than single models. 

The members of the ensemble might be predicting real-

valued numbers, class labels, posterior probabilities, rankings, 

clusterings, or any other quantity. Therefore, their decisions 

can be combined by many methods, including averaging, 

voting, and probabilistic methods. The majority of ensemble 

learning methods are generic as well as applicable across broad 

classes of model types and learning tasks. 

Several machine learning techniques do this by learning 

an ensemble of models and using them in combination. 

Prominent among these are schemes called bagging, boosting, 

and stacking (Witten, Frank, & Hall, 2011). They can all, more 

often than not, increase predictive performance over a single 

model. They are general techniques that can be applied to 

classification tasks and numeric prediction problems. Bagging, 

boosting, and stacking have been developed over the last 

couple of decades, and their performance is often astonishingly 

good. Machine learning researchers have struggled to 

understand why. And during that struggle, new methods have 

emerged that are sometimes even better. For example, while 

human committees rarely benefit from noisy distractions, 

shaking up bagging by adding random variants of classifiers 

can improve performance. 

 

3.9 Proposed Frameworks for Software Defect Prediction 

Three frameworks that are highly cited and therefore 

influential in the software defect prediction field are the 

Menzies et al. Framework (Menzies et al., 2007), Lessmann et 
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al. Framework (Lessmann et al., 2008), and Song et al. 

Framework (Song et al., 2011). 

 

3.9.1 Menzies et al.’s Framework 

Menzies et al. (2007) published a study which compared 

the performance of two classification algorithms techniques to 

predict software components containing defects (Menzies et 

al., 2007). They used the NASA MDP repository, which 

contained 10 different datasets. Many researchers have 

explored issues like the relative merits of Halstead’s software 

science measures, McCabe’s cyclomatic complexity and lines 

of code counts for building defect predictors. However, 

Menzies et al. (2007) claim that such debates are irrelevant 

since how the attributes are used to build predictors is much 

more important than which particular attributes are used, and 

the choice of learning method is far more important than which 

subset of the available data is used for learning (Menzies et al., 

2007). Their research revealed that a Naive Bayes classifier 

had a mean probability of detection of 71 percent and mean 

false alarms rates of 25 percent, after log filtering and attribute 

selection based on InfoGain. Naive bayes significantly 

outperformed the rule induction methods of J48 and OneR. 

However, the choice of which attribute subset is used for 

learning is not only circumscribed by the attribute subset itself 

and available data, but also by attribute selectors, learning 

algorithms, and data preprocessors. An intrinsic relationship 

between a learning method and an attribute selection method is 

well known. For example, Hall and Holmes (2003) concluded 

that the backward elimination (BE) search is more suitable for 

C4.5, but the forward selection (FS) search was well suited to 

Naive Bayes (Hall and Holmes 2003). Therefore, Menzies et 

al. chose the combination of all learning algorithm, data 

preprocessing, and attribute selection method before building 

prediction models. Figure 13 shows Menzies et al.’s software 

defect prediction framework. 
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Figure 13 Menzies et al.’s Framework 

(Compiled from (Menzies et al., 2007)) 

3.9.2 Lessmann et al.’s Framework 

Lessmann et al. also conducted a follow up to Menzies et 

al.’s framework on defect predictions (Lessmann et al., 2008). 

However, Lessmann et al. did not perform attribute selection 

when building prediction models. Lessmann et al. consider 

three potential sources for bias: 1) relying on accuracy 

indicators that are conceptually inappropriate for software 

defect prediction and cross-study comparisons, 2) limiting use 

of statistical testing procedures to secure empirical findings, 

and 3) comparing classifiers over one or a small number of 

proprietary datasets. Lessman et al. (2008) proposed a 

framework for comparative software defect prediction 

experiments. This framework is implemented on a large scale 

empirical comparison of 22 classifiers over 10 datasets from 

the NASA Metrics Data repository. An appealing degree of 

predictive accuracy is observed, which supports the view that 

the metric based classification is useful. However, the results 

showed that no significant performance differences could be 

detected among the top 17 classifiers. It indicates that the 

importance of the particular classification algorithm may be 

less than previously assumed. Figure 14 shows Lessman et 

al.’s software defect prediction framework. 
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Figure 14 Lessmann et al.’s Framework 

(Compiled from (Lessmann et al., 2008)) 

3.9.3 Song et al.’s Framework  

Song et al. (Song et al., 2011) also conducted a follow-up 

to the results of (Menzies et al., 2007) research on defect 

predictions. Song et al. developed a general-purpose defect 

prediction framework, which consists of two parts: scheme 

evaluation and defect prediction. Scheme evaluation focuses 

on evaluating the performance of a learning scheme, while 

defect prediction focuses on building a final predictor using 

historical data according to the learning scheme. Then the 

predictor is used to predict the defect-prone components of a 

new software. A learning scheme consists of 1) a data 

preprocessor, 2) an attribute selector, and 3) a learning 

algorithm. The main difference between Song et al.’s 

framework and that of Menzies et al.’s framework lies in the 

following. Song et al. chose the entire learning scheme, not just 

one out of the learning algorithm, attribute selector, or data 

preprocessor. 

Song et al. also argued that Menzies et al’s attribute 

selection approach is problematic and produced a bias in the 

evaluation results. One reason is that they ranked attributes on 

the entire dataset, including both the training and test data, 

though the class labels of the test data should have been made 

unknown to the predictor. However, it violated the intention of 

the holdout strategy. The potential result is that they 

overestimate the performance of their learning model and 

thereby report a potentially misleading result. After ranking the 

attributes, each individual attribute are evaluated separately 

and the features with the highest scores are chosen. 

Unfortunately, this approach cannot consider features with 

complementary information, and does not account for attribute 

dependence. It is also not capable of eliminating redundant 

features because redundant features are likely to have similar 
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rankings. They will all be selected as long as the features are 

deemed relevant to the class, even though many of them are 

highly correlated to each other. Figure 15 shows Song et al.’s 

software defect prediction framework. 

 

LEARNING SCHEME

Data Preprocessor

Feature  Selectors

Learning Algorithms

Performance Report

Processed

Testing

Data

Training

Data

NASA

MDP

Datasets

Testing

Data

Processed

Training

Data

Data Preprocessing

Feature Selection

Testing and 

Validation
Learning

Models

Log-Filtering

FS BE

NB DT 1R

 
Figure 15 Song et al.’s Framework 

(Compiled from (Song et al., 2011)) 

4 CONCLUSION AND FUTURE WORKS 

This literature review aims to identify and analyze the 

trends, datasets, methods and frameworks used in software 

defect prediction research betweeen 2000 and 2013. Based on 

the designed inclusion and exclusion criteria, finally 71 

software defect prediction studies published between January 

2000 and December 2013 were remained and investigated. 

This literature review has been undertaken as a systematic 

literature review. Systematic literature review is defined as a 

process of identifying, assessing, and interpreting all available 

research evidence with the purpose to provide answers for 

specific research questions. 

Analysis of the selected primary studies revealed that 

current software defect prediction research focuses on five 

topics and trends: estimation, association, classification, 

clustering and dataset analysis. The total distribution of defect 

prediction methods is as follows. 77.46% of the research 

studies are related to classification methods, 14.08% of the 

studies focused on estimation methods, and 1.41% of the 

studies concerned on clustering and association methods. In 

addition, 64.79% of the research studies used public datasets 

and 35.21% of the research studies used private datasets. 

Nineteen different methods have been applied to predict 

software defects. From the nineteen methods, seven most 

applied methods in software defect prediction are identified. 

They are Logistic Regression (LR), Naïve Bayes (NB), K-

Nearest Neighbor (k-NN), Neural Network (NN), Decision 

Tree (DT), Support Vector Machine (SVM) and Random 

Forest (RF) 

Researchers proposed some techniques for improving the 

accuracy of machine learning classifier for software defect 

prediction by ensembling some machine learning methods, by 

using boosting algorithm, by adding feature selection and by 

using parameter optimization for some classifiers. 

The results of this research also identified three 

frameworks that are highly cited and therefore influential in the 

software defect prediction field. They are the Menzies et al. 

Framework, Lessmann et al. Framework, and Song et al. 

Framework. 

Unfortunatelly, the existing software defect prediction 

framework revealed some problems. Unintentionally 

misleading results and overoptimism on the part of the 

researchers can result from incomplete validation mechanism. 

Comprehensive evaluation of different prediction methods is 

still an open issue in the field of software defect prediction 

(Mende and Koschke 2009). More reliable research procedures 

need to be developed, before the confident conclusion of 

comparative studies of software prediction models can be made 

(Lessmann et al., 2008) (Myrtveit, Stensrud, & Shepperd, 

2005) (Song et al., 2011) (Menzies et al., 2010). This research 

proposes a new comparison frameworks for software defect 

prediction in order to fulfill the requirement for more 

systematic and unbiased methods for comparing the 

performance of machine-learning-based defect prediction. 

Frameworks developed by Menzies et al., Lessmann et al., 

and Song et al. are missing in the processing of class imbalance 

problem in datasets. Software defect datasets are suferring 

from an imbalanced problem in datasets with very few 

defective modules compared to defect-free ones (Wang and 

Yao 2013) (Zhang and Zhang 2007). The most well-known 

issue regarding the use of NASA datasets in classification 

experiments is the variety levels of imbalanced class (Gray et 

al. 2012). Class imbalance either reduces classifier 

performance (Gray, Bowes, Davey, & Christianson, 2011). 

The bagging as meta-learning method is used in this study to 

overcome the class imbalance problem. 

The issue of dealing with noisy data has not been 

addressed adequately in the three frameworks. The noisy and 

irrelevant features on software defect prediction results in 

inefficient outcome of the model (Gayatri et al. 2010). The 

software defect prediction accuracy decreases significantly 

because the dataset contains noisy attributes. The accuracy of 

software defect prediction improved when irrelevant and 

redundant attributes are removed. The Lessmann et al. 

framework does not address the issue regarding to the noisy 

and irrelevant attribute problems. The Menzies et al. and Song 

et al. frameworks employed the traditional feature selection 

algorithms such as information gain, forward selection and 

backward elimination. In this research, noisy attribute 

problems were addressed by using metaheuristic optimization 

methods, especially genetic algorithm and particle swarm 

optimization. Cano et al. (2003) have shown that better results 

in terms of higher classification accuracy can be obtained with 

the metaheuristic optimization method than with many 

traditional and non-evolutionary feature selection methods 

(Cano, Herrera, & Lozano, 2003). 

Finally, the list of primary studies is presented in Table 6. 

This list is comprised of 6 attributes (year, primary studies, 

publications, datasets, methods, and topics) and 71 primary 

studies (from January 2000 to December 2013), and ordered by 

year of publication.  

Figure 16 shows the complete mind map, which presents 

the results of the systematic literature review on software 

defect prediction. Mind maps have been used to explore 

relationships between ideas and elements of an argument and 

to generate solutions to problems. It puts a new perspective on 

things to see all the relevant issues and analyze choices in light 

of the one big picture (Buzan and Griffiths 2013). It also makes 

it easier to logically organize information and integrate new 

knowledge. In this research the mind map is used to present the 

results of the systematic literature review on software defect 

prediction. 
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Table 6 The List of Primary Studies in the Field of Software Defect Prediction 

Year Primary Studies Publications Datasets Methods Topics 

2000 
(Khoshgoftaar and Allen 2000) 

(Lyu, 2000) 

IEEE Transactions on Reliability 

Asia-Pacific Conference on Quality Software 

Private 

Private 

Fuzzy Nonlinear Regression 

Expectation-Maximum 

Estimation 

Classification 

2001 

(Khaled El Emam, Melo, & Machado, 2001) 

(N. Fenton, Krause, & Neil, 2001) 
(Shepperd and Kadoda 2001) 

IEEE Transactions on Software Engineering 

IEEE Transactions on Software Engineering 
IEEE Transactions on Software Engineering 

Private 

Private 
Private 

Capture-Recapture Model 

Naïve Bayes 
k-Nearest Neighbor 

Estimation 

Classification 
Estimation 

2002 
(Pizzi, Summers, & Pedrycz, 2002) 
(Khoshgoftaar and Seliya 2002) 

International Joint Conference on Neural Networks 
IEEE Symposium on Software Metrics 

Private 
Private 

Neural Network 
Decision Tree (CART) 

Classification 
Classification 

2003 

(L. Guo, Cukic, & Singh, 2003)  

(Quah et al., 2003) 

(Güneş Koru and Tian 2003) 

IEEE Conference on Automated Software Engineering 

International Conference on Software Maintenance 

Journal of Systems and Software 

Public 

Private 

Private 

Neural Network 

Neural Network 

Decision Tree 

Classification 

Estimation 

Classification 

2004 

(Menzies, DiStefano, Orrego, & Chapman, 2004)  

(Wang and Yu 2004) 

(Kanmani, Uthariaraj, Sankaranarayanan, & Thambidurai, 2004) 

(V. U. B. Challagulla et al., 2004) 

IEEE Symposium on High Assurance Systems Engineering 

IEEE Conference on Tools with Artificial Intelligence 

ACM SIGSOFT Software Engineering Notes 

IEEE Workshop on OO Real-Time Dependable Systems 

Public 

Private 

Private 

Public 

Naïve Bayes 

Neural Network 

Neural Network 

Naïve Bayes 

Classification 

Classification 

Estimation 

Classification 

2005 

(Taghi M Khoshgoftaar et al., 2005) 

(Xing, Guo, & Lyu, 2005)  

(Koru and Liu 2005)  
(Ostrand et al., 2005) 

Empirical Software Engineering 

IEEE Symposium on Software Reliability Engineering 

IEEE Software 
IEEE Transactions on Software Engineering 

Private 

Private 

Public 
Private 

Decision Tree 

Support Vector Machine 

Decision Tree and Naïve Bayes 
Linear Regression 

Classification 

Classification 

Classification 
Estimation 

2006 

(Yan Ma, Guo, & Cukic, 2007) 

(Shepperd et al., 2006) 

(Taghi M. Khoshgoftaar, Seliya, & Sundaresh, 2006)  

(V. Challagulla, Bastani, & Yen, 2006) 

(Zhou and Leung 2006) 

Advances in Machine Learning 

IEEE Transactions on Software Engineering 

Software Quality Journal 

IEEE Conference on Tools with Artificial Intelligence 

IEEE Transactions on Software Engineering 

Public 

Public 

Private 

Public 

Public  

Random Forest 

Association Rule 

k-Nearest Neighbor 

Memory based Reasoning 

Logistic Regression 

Classification 

Association 

Estimation 

Classification 

Classification 

2007 

(Menzies et al., 2007) 

(Li and Reformat 2007) 

(Yan Ma et al., 2007) 

(Pai and Dugan 2007)  
(Seliya and Khoshgoftaar 2007) 

(N. Fenton et al., 2007) 

(Güneş Koru and Liu 2007) 

IEEE Transactions on Software Engineering 

IEEE Conference on Information Reuse and Integration 

Advances in Machine Learning Applications in Software Engineering 

IEEE Transactions on Software Engineering 
Software Quality Journal 

Information and Software Technology 

Journal of Systems and Software 

Public 

Public 

Public 

Public 
Public 

Private 

Public 

Naïve Bayes 

Fuzzy Inference System 

Random Forest 

Naïve Bayes 
Expectation-Maximum 

Naïve Bayes 

Decision Tree 

Classification 

Classification 

Classification 

Classification 
Classification 

Classification 

Classification 

2008 

(Lessmann et al., 2008) 

(Bibi et al., 2008) 

(Gondra, 2008) 

(Vandecruys et al., 2008) 

(Elish and Elish 2008) 

IEEE Transactions on Software Engineering 

Expert Systems with Applications 

Journal of Systems and Software 

Journal of Systems and Software 

Journal of Systems and Software 

Public 

Private 

Public 

Public 

Public 

Random Forest, LR, LDA 

Regression via Classification 

Support Vector Machine 

Ant Colony Optimization 

Support Vector Machine 

Classification 

Estimation 

Classification 

Classification 

Classification 

2009 

(Catal and Diri 2009a) 

(Turhan, Kocak, & Bener, 2009)  
(Seiffert, Khoshgoftaar, & Van Hulse, 2009) 

(Khoshgoftaar and Gao 2009) 

(Catal and Diri 2009b) 

(Turhan, Menzies, Bener, & Di Stefano, 2009) 

Expert Systems with Applications 

Expert Systems with Applications 
IEEE Transactions on Systems, Man, and Cybernetics 

International Conference on Machine Learning and Applications 

Information Sciences 

Empirical Software Engineering 

Public 

Private 
Public 

Public 

Public  

Public 

Random Forest 

Static Call Graph Based Ranking 
Boosting 

Undersampling 

Random Forest and Naïve Bayes 

k-Nearest Neighbor 

Classification 

Classification 
Classification 

Classification 

Classification 

Classification 

2010 

(Menzies et al., 2010)  

(Zheng, 2010) 

(Liu, Khoshgoftaar, & Seliya, 2010) 

(H. Wang, Khoshgoftaar, & Napolitano, 2010) 

(Gayatri et al., 2010) 
(Arisholm et al., 2010) 

 

 

 

Automated Software Engineering 
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Figure 16 Complete Mind Map of the SLR on Software Defect Prediction



Journal of Software Engineering, Vol. 1, No. 1, April 2015             ISSN 2356-3974 

Copyright © 2015 IlmuKomputer.Com                                         14 

http://journal.ilmukomputer.org 

REFERENCES 

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data Mining 

Techniques for Building Fault-proneness Models in Telecom 

Java Software. Proceedings of the The 18th IEEE International 

Symposium on Software Reliability, 215–224. 

http://doi.org/10.1109/ISSRE.2007.22 

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A 

systematic and comprehensive investigation of methods to 

build and evaluate fault prediction models. Journal of Systems 

and Software, 83(1), 2–17. 

http://doi.org/10.1016/j.jss.2009.06.055 

Azar, D., & Vybihal, J. (2011). An ant colony optimization algorithm 

to improve software quality prediction models: Case of class 

stability. Information and Software Technology, 53(4), 388–

393. http://doi.org/10.1016/j.infsof.2010.11.013 

Benaddy, M., & Wakrim, M. (2012). Simulated Annealing Neural 

Network for Software Failure Prediction. International Journal 

of Software Engineering and Its Applications, 6(4). 

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008). 

Regression via Classification applied on software defect 

estimation. Expert Systems with Applications, 34(3), 2091–

2101. http://doi.org/10.1016/j.eswa.2007.02.012 

Bishnu, P. S., & Bhattacherjee, V. (2012). Software Fault Prediction 

Using Quad Tree-Based K-Means Clustering Algorithm. IEEE 

Transactions on Knowledge and Data Engineering, 24(6), 

1146–1150. http://doi.org/10.1109/TKDE.2011.163 

Boehm, B., & Basili, V. R. (2001). Top 10 list [software 

development]. Computer, 34(1), 135–137. 

Buzan, T., & Griffiths, C. (2013). Mind Maps for Business: Using the 

ultimate thinking tool to revolutionise how you work (2nd 

Edition). FT Press. 

Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary 

algorithms as instance selection for data reduction in KDD: an 

experimental study. IEEE Transactions on Evolutionary 

Computation, 7(6), 561–575. 

Cao, H., Qin, Z., & Feng, T. (2012). A Novel PCA-BP Fuzzy Neural 

Network Model for Software Defect Prediction. Advanced 

Science Letters, 9(1), 423–428. 

Catal, C. (2011). Software fault prediction: A literature review and 

current trends. Expert Systems with Applications, 38(4), 4626–

4636. 

Catal, C., Alan, O., & Balkan, K. (2011). Class noise detection based 

on software metrics and ROC curves. Information Sciences, 

181(21), 4867–4877. 

Catal, C., & Diri, B. (2009a). A systematic review of software fault 

prediction studies. Expert Systems with Applications, 36(4), 

7346–7354. 

Catal, C., & Diri, B. (2009b). Investigating the effect of dataset size, 

metrics sets, and feature selection techniques on software fault 

prediction problem. Information Sciences, 179(8), 1040–1058. 

http://doi.org/10.1016/j.ins.2008.12.001 

Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an 

Eclipse-based software fault prediction tool using Naive Bayes 

algorithm. Expert Systems with Applications, 38(3), 2347–

2353. http://doi.org/10.1016/j.eswa.2010.08.022 

Challagulla, V., Bastani, F., & Yen, I. (2006). A Unified Framework 

for Defect Data Analysis Using the MBR Technique. 2006 18th 

IEEE International Conference on Tools with Artificial 

Intelligence (ICTAI’06), 39–46. 

http://doi.org/10.1109/ICTAI.2006.23 

Challagulla, V. U. B., Bastani, F. B., & Paul, R. A. (2004). Empirical 

Assessment of Machine Learning based Software Defect 

Prediction Techniques. In 10th IEEE International Workshop 

on Object-Oriented Real-Time Dependable Systems (pp. 263–

270). IEEE. http://doi.org/10.1109/WORDS.2005.32 

Chang, C.-P., Chu, C.-P., & Yeh, Y.-F. (2009). Integrating in-process 

software defect prediction with association mining to discover 

defect pattern. Information and Software Technology, 51(2), 

375–384. http://doi.org/10.1016/j.infsof.2008.04.008 

Chang, R. H., Mu, X. D., & Zhang, L. (2011). Software Defect 

Prediction Using Non-Negative Matrix Factorization. Journal 

of Software, 6(11), 2114–2120. 

http://doi.org/10.4304/jsw.6.11.2114-2120 

Cukic, B., & Singh, H. (2004). Robust Prediction of Fault-Proneness 

by Random Forests. 15th International Symposium on Software 

Reliability Engineering, 417–428. 

http://doi.org/10.1109/ISSRE.2004.35 

Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward 

Comprehensible Software Fault Prediction Models Using 

Bayesian Network Classifiers. IEEE Transactions on Software 

Engineering, 39(2), 237–257. 

http://doi.org/10.1109/TSE.2012.20 

Denaro, G. (2000). Estimating software fault-proneness for tuning 

testing activities. In Proceedings of the 22nd International 

Conference on Software engineering - ICSE ’00 (pp. 704–706). 

New York, New York, USA: ACM Press. 

El Emam, K., & Laitenberger, O. (2001). Evaluating capture-

recapture models with two inspectors. IEEE Transactions on 

Software Engineering, 27(9), 851–864. 

http://doi.org/10.1109/32.950319 

El Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of 

faulty classes using object-oriented design metrics. Journal of 

Systems and Software, 56(1), 63–75. 

http://doi.org/10.1016/S0164-1212(00)00086-8 

Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software 

modules using support vector machines. Journal of Systems 

and Software, 81(5), 649–660. 

http://doi.org/10.1016/j.jss.2007.07.040 

Fenton, N. E., & Neil, M. (1999). A critique of software defect 

prediction models. IEEE Transactions on Software 

Engineering, 25(5), 675–689. 

http://doi.org/10.1109/32.815326 

Fenton, N., Krause, P., & Neil, M. (2001). A Probabilistic Model for 

Software Defect Prediction. IEEE Transactions on Software 

Engineering, 44(0), 1–35. 

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., 

& Mishra, R. (2007). Predicting software defects in varying 

development lifecycles using Bayesian nets. Information and 

Software Technology, 49(1), 32–43. 

http://doi.org/10.1016/j.infsof.2006.09.001 

Gayatri, N., Reddy, S., & Nickolas, A. V. (2010). Feature Selection 

Using Decision Tree Induction in Class level Metrics Dataset 

for Software Defect Predictions. Lecture Notes in Engineering 

and Computer Science, 2186(1), 124–129. 

Gondra, I. (2008). Applying machine learning to software fault-

proneness prediction. Journal of Systems and Software, 81(2), 

186–195. http://doi.org/10.1016/j.jss.2007.05.035 

Gray, D., Bowes, D., Davey, N., & Christianson, B. (2011). The 

misuse of the NASA Metrics Data Program data sets for 

automated software defect prediction. 15th Annual Conference 

on Evaluation & Assessment in Software Engineering (EASE 

2011), 96–103. 

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012). 

Reflections on the NASA MDP data sets. IET Software, 6(6), 

549. 

Güneş Koru, a., & Liu, H. (2007). Identifying and characterizing 

change-prone classes in two large-scale open-source products. 

Journal of Systems and Software, 80(1), 63–73. 

http://doi.org/10.1016/j.jss.2006.05.017 

Güneş Koru, A., & Tian, J. (2003). An empirical comparison and 

characterization of high defect and high complexity modules. 

Journal of Systems and Software, 67(3), 153–163. 

http://doi.org/10.1016/S0164-1212(02)00126-7 

Guo, L., Cukic, B., & Singh, H. (2003). Predicting fault prone 

modules by the Dempster-Shafer belief networks. In 

Proceedings of the 18th IEEE International Conference on 

Automated Software Engineering, 2003 (pp. 249–252). IEEE 

Comput. Soc. http://doi.org/10.1109/ASE.2003.1240314 

Guo, X. C., Yang, J. H., Wu, C. G., Wang, C. Y., & Liang, Y. C. 

(2008). A novel LS-SVMs hyper-parameter selection based on 

particle swarm optimization. Neurocomputing, 71(16-18), 

3211–3215. http://doi.org/10.1016/j.neucom.2008.04.027 



Journal of Software Engineering, Vol. 1, No. 1, April 2015             ISSN 2356-3974 

Copyright © 2015 IlmuKomputer.Com                                         15 

http://journal.ilmukomputer.org 

Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection 

techniques for discrete class data mining. IEEE Transactions 

on Knowledge and Data Engineering, 15(6), 1437–1447. 

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A 

Systematic Literature Review on Fault Prediction Performance 

in Software Engineering. IEEE Transactions on Software 

Engineering, 38(6), 1276–1304. 

IEEE. (1990). IEEE Standard Glossary of Software Engineering 

Terminology (Vol. 121990). Inst. of Electrical and Electronical 

Engineers. 

J. Pai, G., & Bechta Dugan, J. (2007). Empirical Analysis of Software 

Fault Content and Fault Proneness Using Bayesian Methods. 

IEEE Transactions on Software Engineering, 33(10), 675–686. 

http://doi.org/10.1109/TSE.2007.70722 

Jiang, Y., Li, M., Zhou, Z., & Member, S. (2011). Software Defect 

Detection with rocus. Journal of Computer Science and 

Technology, 26(2), 328–342. http://doi.org/10.1007/s11390-

011-1135-6 

Jin, C., Jin, S.-W., & Ye, J.-M. (2012). Artificial neural network-

based metric selection for software fault-prone prediction 

model. IET Software, 6(6), 479. http://doi.org/10.1049/iet-

sen.2011.0138 

Jones, C., & Bonsignour, O. (2012). The Economics of Software 

Quality. Pearson Education, Inc. 

Jorgensen, M., & Shepperd, M. (2007). A Systematic Review of 

Software Development Cost Estimation Studies. IEEE 

Transactions on Software Engineering, 33(1). 

Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., & 

Thambidurai, P. (2004). Object oriented software quality 

prediction using general regression neural networks. ACM 

SIGSOFT Software Engineering Notes, 29(5), 1. 

http://doi.org/10.1145/1022494.1022515 

Karthik, R., & Manikandan, N. (2010). Defect association and 

complexity prediction by mining association and clustering 

rules. 2010 2nd International Conference on Computer 

Engineering and Technology, V7–569–V7–573. 

http://doi.org/10.1109/ICCET.2010.5485608 

Kenny, G. Q. (1993). Estimating defects in commercial software 

during operational use. IEEE Transactions on Reliability, 

42(1), 107–115. 

Khoshgoftaar, T. M., & Allen, E. B. (2000). Prediction of software 

faults using fuzzy nonlinear regression modeling. Proceedings. 

Fifth IEEE International Symposium on High Assurance 

Systems Engineering (HASE 2000), 281–290. 

http://doi.org/10.1109/HASE.2000.895473 

Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J. 

(1997). Application of neural networks to software quality 

modeling of a very large telecommunications system. IEEE 

Transactions on Neural Networks / a Publication of the IEEE 

Neural Networks Council, 8(4), 902–9. 

http://doi.org/10.1109/72.595888 

Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. P. 

(2000). Classification-tree models of software-quality over 

multiple releases. IEEE Transactions on Reliability, 49(1), 4–

11. http://doi.org/10.1109/24.855532 

Khoshgoftaar, T. M., & Gao, K. (2009). Feature Selection with 

Imbalanced Data for Software Defect Prediction. 2009 

International Conference on Machine Learning and 

Applications, 235–240. 

http://doi.org/10.1109/ICMLA.2009.18 

Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-based software quality 

estimation models for fault prediction. Proceedings Eighth 

IEEE Symposium on Software Metrics, 203–214. 

http://doi.org/10.1109/METRIC.2002.1011339 

Khoshgoftaar, T. M., Seliya, N., & Gao, K. (2005). Assessment of a 

New Three-Group Software Quality Classification Technique: 

An Empirical Case Study. Empirical Software Engineering, 

10(2), 183–218. 

Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An 

empirical study of predicting software faults with case-based 

reasoning. Software Quality Journal, 14(2), 85–111. 

http://doi.org/10.1007/s11219-006-7597-z 

Khoshgoftaar, T. M., & Van Hulse, J. (2009). Empirical Case Studies 

in Attribute Noise Detection. IEEE Transactions on Systems, 

Man, and Cybernetics, Part C (Applications and Reviews), 

39(4), 379–388. 

Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2011). 

Comparing Boosting and Bagging Techniques With Noisy and 

Imbalanced Data. IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, 41(3), 552–568. 

Kitchenham, B., & Charters, S. (2007). Guidelines for performing 

Systematic Literature Reviews in Software Engineering. EBSE 

Technical Report Version 2.3, EBSE-2007-. 

Koru, A. G., & Liu, H. (2005). An investigation of the effect of 

module size on defect prediction using static measures. In 

Proceedings of the 2005 workshop on Predictor models in 

software engineering - PROMISE ’05 (Vol. 30, pp. 1–5). New 

York, New York, USA: ACM Press. 

http://doi.org/10.1145/1082983.1083172 

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). 

Benchmarking Classification Models for Software Defect 

Prediction: A Proposed Framework and Novel Findings. IEEE 

Transactions on Software Engineering, 34(4), 485–496. 

Li, Z., & Reformat, M. (2007). A practical method for the software 

fault-prediction. In 2007 IEEE International Conference on 

Information Reuse and Integration (pp. 659–666). IEEE. 

http://doi.org/10.1109/IRI.2007.4296695 

Lin, S.-W., Ying, K.-C., Chen, S.-C., & Lee, Z.-J. (2008). Particle 

swarm optimization for parameter determination and feature 

selection of support vector machines. Expert Systems with 

Applications, 35(4), 1817–1824. 

http://doi.org/10.1016/j.eswa.2007.08.088 

Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary 

Optimization of Software Quality Modeling with Multiple 

Repositories. IEEE Transactions on Software Engineering, 

36(6), 852–864. 

Lyu, M. R. (2000). Software quality prediction using mixture models 

with EM algorithm. In Proceedings First Asia-Pacific 

Conference on Quality Software (pp. 69–78). IEEE Comput. 

Soc. http://doi.org/10.1109/APAQ.2000.883780 

Ma, Y., Guo, L., & Cukic, B. (2007). A Statistical Framework for the 

Prediction of Fault-Proneness. In Advances in Machine 

Learning Applications in Software Engineering (pp. 1–26). 

Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for 

cross-company software defect prediction. Information and 

Software Technology, 54(3), 248–256. 

http://doi.org/10.1016/j.infsof.2011.09.007 

Maimon, O., & Rokach, L. (2010). Data Mining and Knolwedge 

Discovery Handbook Second Edition. Springer. 

McDonald, M., Musson, R., & Smith, R. (2007). The practical guide 

to defect prevention. Control, 260–272. 

Mende, T., & Koschke, R. (2009). Revisiting the evaluation of defect 

prediction models. Proceedings of the 5th International 

Conference on Predictor Models in Software Engineering - 

PROMISE ’09, 1. http://doi.org/10.1145/1540438.1540448 

Menzies, T., DiStefano, J., Orrego, A. S., & Chapman, R. (2004). 

Assessing predictors of software defects. In Proceedings of the 

Workshop on Predictive Software Models. 

Menzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static 

Code Attributes to Learn Defect Predictors. IEEE Transactions 

on Software Engineering, 33(1), 2–13. 

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. 

(2010). Defect prediction from static code features: current 

results, limitations, new approaches. Automated Software 

Engineering, 17(4), 375–407. 

Mısırlı, A. T., Bener, A. B., & Turhan, B. (2011). An industrial case 

study of classifier ensembles for locating software defects. 

Software Quality Journal, 19(3), 515–536. 

http://doi.org/10.1007/s11219-010-9128-1 

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and 

validity in comparative studies of software prediction models. 

IEEE Transactions on Software Engineering, 31(5), 380–391. 

http://doi.org/10.1109/TSE.2005.58 

Naik, K., & Tripathy, P. (2008). Software Testing and Quality 

Assurance. John Wiley & Sons, Inc. 



Journal of Software Engineering, Vol. 1, No. 1, April 2015             ISSN 2356-3974 

Copyright © 2015 IlmuKomputer.Com                                         16 

http://journal.ilmukomputer.org 

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the 

location and number of faults in large software systems. IEEE 

Transactions on Software Engineering, 31(4), 340–355. 

http://doi.org/10.1109/TSE.2005.49 

Park, B., Oh, S., & Pedrycz, W. (2013). The design of polynomial 

function-based neural network predictors for detection of 

software defects. Information Sciences, 229, 40–57. 

Pelayo, L., & Dick, S. (2012). Evaluating Stratification Alternatives 

to Improve Software Defect Prediction. IEEE Transactions on 

Reliability, 61(2), 516–525. 

http://doi.org/10.1109/TR.2012.2183912 

Peng, J., & Wang, S. (2010). Parameter Selection of Support Vector 

Machine based on Chaotic Particle Swarm Optimization 

Algorithm. Electrical Engineering, 3271–3274. 

Peng, Y., Wang, G., & Wang, H. (2012). User preferences based 

software defect detection algorithms selection using MCDM. 

Information Sciences, 191, 3–13. 

http://doi.org/10.1016/j.ins.2010.04.019 

Peters, F., Menzies, T., Gong, L., & Zhang, H. (2013). Balancing 

Privacy and Utility in Cross-Company Defect Prediction. IEEE 

Transactions on Software Engineering, 39(8), 1054–1068. 

http://doi.org/10.1109/TSE.2013.6 

Pizzi, N. J., Summers, A. R., & Pedrycz, W. (2002). Software quality 

prediction using median-adjusted class labels. Proceedings of 

the 2002 International Joint Conference on Neural Networks. 

IJCNN’02 (Cat. No.02CH37290), (1), 2405–2409. 

http://doi.org/10.1109/IJCNN.2002.1007518 

Quah, T., Mie, M., Thwin, T., & Quah, T. (2003). Application of 

neural networks for software quality prediction using object-

oriented metrics. International Conference on Software 

Maintenance, 2003. ICSM 2003. Proceedings. IEEE Comput. 

Soc. 

Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013, 

August). Software fault prediction metrics: A systematic 

literature review. Information and Software Technology. 

http://doi.org/10.1016/j.infsof.2013.02.009 

Sammut, C., & Webb, G. I. (2011). Encyclopedia of Machine 

Learning. Springer. 

Sandhu, P. S., Kumar, S., & Singh, H. (2007). Intelligence System for 

Software Maintenance Severity Prediction. Journal of 

Computer Science, 3(5), 281–288. 

http://doi.org/10.3844/jcssp.2007.281.288 

Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2009). Improving 

Software-Quality Predictions With Data Sampling and 

Boosting. IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, 39(6), 1283–1294. 

Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis 

of Unlabeled Program Modules With Semisupervised 

Clustering. IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, 37(2), 201–211. 

http://doi.org/10.1109/TSMCA.2006.889473 

Shepperd, M., Cartwright, M., & Mair, C. (2006). Software defect 

association mining and defect correction effort prediction. 

IEEE Transactions on Software Engineering, 32(2), 69–82. 

http://doi.org/10.1109/TSE.2006.1599417 

Shepperd, M., & Kadoda, G. (2001). Comparing software prediction 

techniques using simulation. IEEE Transactions on Software 

Engineering, 27(11), 1014–1022. 

http://doi.org/10.1109/32.965341 

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality: 

Some Comments on the NASA Software Defect Datasets. 

IEEE Transactions on Software Engineering, 39(9), 1208–

1215. http://doi.org/10.1109/TSE.2013.11 

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General 

Software Defect-Proneness Prediction Framework. IEEE 

Transactions on Software Engineering, 37(3), 356–370. 

Sun, Z., Song, Q., & Zhu, X. (2012). Using Coding-Based Ensemble 

Learning to Improve Software Defect Prediction. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C 

(Applications and Reviews), 42(6), 1806–1817. 

http://doi.org/10.1109/TSMCC.2012.2226152 

Tosun, A., Turhan, B., & Bener, A. (2008). Ensemble of software 

defect predictors. In Proceedings of the Second ACM-IEEE 

international symposium on Empirical software engineering 

and measurement - ESEM ’08 (p. 318). New York, New York, 

USA: ACM Press. http://doi.org/10.1145/1414004.1414066 

Turhan, B., Kocak, G., & Bener, A. (2009). Data mining source code 

for locating software bugs: A case study in telecommunication 

industry. Expert Systems with Applications, 36(6), 9986–9990. 

http://doi.org/10.1016/j.eswa.2008.12.028 

Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the 

relative value of cross-company and within-company data for 

defect prediction. Empirical Software Engineering, 14(5), 540–

578. http://doi.org/10.1007/s10664-008-9103-7 

Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M. K. M. M., 

Cheng, C. K., Permadi, R. B., & Feldt, R. (2012). Evaluation 

and Measurement of Software Process Improvement—A 

Systematic Literature Review. IEEE Transactions on Software 

Engineering, 38(2), 398–424. 

http://doi.org/10.1109/TSE.2011.26 

Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M., 

& Haesen, R. (2008). Mining software repositories for 

comprehensible software fault prediction models. Journal of 

Systems and Software, 81(5), 823–839. 

http://doi.org/10.1016/j.jss.2007.07.034 

Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010). A 

Comparative Study of Ensemble Feature Selection Techniques 

for Software Defect Prediction. 2010 Ninth International 

Conference on Machine Learning and Applications, 135–140. 

Wang, Q., & Yu, B. (2004). Extract rules from software quality 

prediction model based on neural network. 16th IEEE 

International Conference on Tools with Artificial Intelligence, 

(Ictai), 191–195. http://doi.org/10.1109/ICTAI.2004.62 

Wang, S., & Yao, X. (2013). Using Class Imbalance Learning for 

Software Defect Prediction. IEEE Transactions on Reliability, 

62(2), 434–443. 

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining Third 

Edition. Elsevier Inc. 

Wong, W. E., Debroy, V., Golden, R., Xu, X., & Thuraisingham, B. 

(2012). Effective Software Fault Localization Using an RBF 

Neural Network. IEEE Transactions on Reliability, 61(1), 149–

169. http://doi.org/10.1109/TR.2011.2172031 

Xing, F., Guo, P., & Lyu, M. R. (2005). A Novel Method for Early 

Software Quality Prediction Based on Support Vector 

Machine. 16th IEEE International Symposium on Software 

Reliability Engineering (ISSRE’05), 213–222. 

http://doi.org/10.1109/ISSRE.2005.6 

Zhang, P., & Chang, Y. (2012). Software fault prediction based on 

grey neural network. In 2012 8th International Conference on 

Natural Computation (pp. 466–469). IEEE. 

http://doi.org/10.1109/ICNC.2012.6234505 

Zheng, J. (2010). Cost-sensitive boosting neural networks for 

software defect prediction. Expert Systems with Applications, 

37(6), 4537–4543. 

Zhou, Y., & Leung, H. (2006). Empirical Analysis of Object-Oriented 

Design Metrics for Predicting High and Low Severity Faults. 

IEEE Transactions on Software Engineering, 32(10), 771–789. 

http://doi.org/10.1109/TSE.2006.102 

 

BIOGRAPHY OF AUTHOR 

 

Romi Satria Wahono. Received B.Eng and 

M.Eng degrees in Computer Science 

respectively from Saitama University, Japan, 

and Ph.D in Software Engineering and 

Machine Learning from Universiti Teknikal 

Malaysia Melaka. He is a lecturer at the 

Faculty of Computer Science, Dian 

Nuswantoro University, Indonesia. He is also 

a founder and chief executive officer of PT 

Brainmatics Cipta Informatika, a software development company in 

Indonesia. His current research interests include software engineering 

and machine learning. Professional member of the ACM, PMI and 

IEEE Computer Society. 


