
Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 1

http://journal.ilmukomputer.org

A Systematic Literature Review of Software Defect Prediction:

Research Trends, Datasets, Methods and Frameworks

Romi Satria Wahono

Faculty of Computer Science, Dian Nuswantoro University

romi@romisatriawahono.net

Abstract: Recent studies of software defect prediction typically

produce datasets, methods and frameworks which allow

software engineers to focus on development activities in terms

of defect-prone code, thereby improving software quality and

making better use of resources. Many software defect

prediction datasets, methods and frameworks are published

disparate and complex, thus a comprehensive picture of the

current state of defect prediction research that exists is missing.

This literature review aims to identify and analyze the research

trends, datasets, methods and frameworks used in software

defect prediction research betweeen 2000 and 2013. Based on

the defined inclusion and exclusion criteria, 71 software defect

prediction studies published between January 2000 and

December 2013 were remained and selected to be investigated

further. This literature review has been undertaken as a

systematic literature review. Systematic literature review is

defined as a process of identifying, assessing, and interpreting

all available research evidence with the purpose to provide

answers for specific research questions. Analysis of the

selected primary studies revealed that current software defect

prediction research focuses on five topics and trends:

estimation, association, classification, clustering and dataset

analysis. The total distribution of defect prediction methods is

as follows. 77.46% of the research studies are related to

classification methods, 14.08% of the studies focused on

estimation methods, and 1.41% of the studies concerned on

clustering and association methods. In addition, 64.79% of the

research studies used public datasets and 35.21% of the

research studies used private datasets. Nineteen different

methods have been applied to predict software defects. From

the nineteen methods, seven most applied methods in software

defect prediction are identified. Researchers proposed some

techniques for improving the accuracy of machine learning

classifier for software defect prediction by ensembling some

machine learning methods, by using boosting algorithm, by

adding feature selection and by using parameter optimization

for some classifiers. The results of this research also identified

three frameworks that are highly cited and therefore influential

in the software defect prediction field. They are Menzies et al.

Framework, Lessmann et al. Framework, and Song et al.

Framework.

Keywords: systematic literature review, software defect

prediction, software defect prediction methods, NASA MDP

datasets

1 INTRODUCTION

A software defect is a fault, error, or failure in a

software (Naik and Tripathy 2008). It produces either an

incorrect, or unexpected result, and behaves in unintended

ways. It is a deficiency in a software product that causes it to

perform unexpectedly (McDonald, Musson, & Smith, 2007).

The definition of a defect is also best described by using the

standard IEEE definitions of error, defect and failure (IEEE,

1990). An error is an action taken by a developer that results in

a defect. A defect is the manifestation of an error in the code

whereas a failure is the incorrect behavior of the system during

execution. A developer error can also be defined as a mistake.

As today’s software grows rapidly in size and complexity,

software reviews and testing play a crucial role in the software

development process, especially in capturing software defects.

Unfortunately, software defects or software faults are very

expensive in cost. Jones and Bonsignour (2012) reported that

the cost of finding and correcting defects is one of the most

expensive software development activities (Jones and

Bonsignour 2012). The cost of software defect increases over

the software development step. During the coding step,

capturing and correcting defects costs $977 per defect. The cost

increases to $7,136 per defect in the software testing phase.

Then in the maintenance phase, the cost to capture and remove

increases to $14,102 (Boehm and Basili 2001).

Software defect prediction approaches are much more cost-

effective to detect software defects as compared to software

testing and reviews. Recent studies report that the probability

of detection of software defect prediction models may be

higher than probability of detection of currently software

reviews used in industrial methods (Menzies et al., 2010).

Therefore, accurate prediction of defect‐prone software helps

to direct test effort, to reduce costs, to improve the software

testing process by focusing on defect-prone modules (Catal,

2011), and finally to improve the quality of the software (T.

Hall, Beecham, Bowes, Gray, & Counsell, 2012). That is why,

today software defect prediction is a significant research topic

in the software engineering field (Song, Jia, Shepperd, Ying, &

Liu, 2011).

Many software defect prediction datasets, methods and

frameworks are published disparate and complex, thus a

comprehensive picture of the current state of defect prediction

research that exists is missing. This literature review aims to

identify and analyze the research trends, datasets, methods and

frameworks used in software defect prediction research

betweeen 2000 and 2013.

This paper is organized as follows. In section 2, the

research methodology are explained. The results and answers

of research questions are presented in section 3. Finally, our

work of this paper is summarized in the last section.

2 METHODOLOGY

2.1 Review Method

A systematic approach for reviewing the literature on the

software defect prediction is chosen. Systematic literature

reviews (SLR) is now a well established review method in

software engineering. An SLR is defined as a process of

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 2

http://journal.ilmukomputer.org

identifying, assessing, and interpreting all available research

evidence with the purpose to provide answers for specific

research questions (Kitchenham and Charters 2007). This

literature review has been undertaken as a systematic literature

review based on the original guidelines proposed by

Kitchenham and Charters (2007). The review method, style

and some of the figures in this section were also motivated by

(Unterkalmsteiner et al., 2012) and (Radjenović, Heričko,

Torkar, & Živkovič, 2013).

As shown in Figure 1, SLR is performed in three stages:

planning, conducting and reporting the literature review. In the

first step the requirements for a systematic review are

identified (Step 1). The objectives for performing the literature

review were discussed in the introduction of this chapter. Then,

the existing systematic reviews on software defect prediction

are identified and reviewed. The review protocol was designed

to direct the execution of the review and reduce the possibility

of researcher bias (Step 2). It defined the research questions,

search strategy, study selection process with inclusion and

exclusion criteria, quality assessment, and finally data

extraction and synthesis process. The review protocol is

presented in Sections 2.2, 2.3, 2.4 and 2.5. The review protocol

was developed, evaluated and iteratively improved during the

conducting and reporting stage of the review.

PLANNING

STAGE

Start

Step 1: Identify the need for a

systematic review

Step 2: Develop review

protocol

Step 3: Evaluate review

protocol

CONDUCTING

STAGE

Step 4: Search for primary

studies

Step 5: Select primary studies

Step 6: Extract data from

primary studies

Step 7: Assess quality of

primary studies

Step 8: Synthesize data

REPORTING

STAGEStep 9: Disseminate results

End

Figure 1 Systematic Literature Review Steps

2.2 Research Questions

The research questions (RQ) were specified to keep the

review focused. They were designed with the help of the

Population, Intervention, Comparison, Outcomes, and Context

(PICOC) criteria (Kitchenham and Charters 2007). Table 1

shows the (PICOC) structure of the research questions.

Table 1 Summary of PICOC

Population Software, software application, software system,

information system

Intervention Software defect prediction, fault prediction, error-

prone, detection, classification, estimation, models,

methods, techniques, datasets

Comparison n/a

Outcomes Prediction accuracy of software defect, successful

defect prediction methods

Context Studies in industry and academia, small and large data

sets

The research questions and motivation addressed by this

literature review are shown in Table 2.

Table 2 Research Questions on Literature Review

ID Research Question Motivation

RQ1 Which journal is the most

significant software defect

prediction journal?

Identify the most significant

journals in the software defect

prediction field

RQ2 Who are the most active and
influential researchers in the

software defect prediction

field?

Identify the most active and
influential researchers who

contributed so much on a

research area of software defect
prediction

RQ3 What kind of research topics

are selected by researchers in
the software defect prediction

field?

Identify research topics and

trends in software defect
prediction

RQ4 What kind of datasets are the
most used for software defect

prediction?

Identify datasets commonly
used in software fault prediction

RQ5 What kind of methods are

used for software defect
prediction?

Identify opportunities and

trends for software defect
prediction method

RQ6 What kind of methods are

used most often for software
defect prediction?

Identify the most used methods

for software defect prediction

RQ7 Which method performs best

when used for software defect

prediction?

Identify the best method in

software defect prediction

RQ8 What kind of method

improvements are proposed

for software defect
prediction?

Identify the proposed method

improvements for predicting the

software defect

RQ9 What kind of frameworks are

proposed for software defect

prediction?

Identify the most used

frameworks in software defect

prediction

From the primary studies, software prediction methods,

frameworks and datasets to answer RQ4 to RQ9 are extracted.

Then, the software defect prediction methods, frameworks and

datasets were analyzed to determine which ones are, and which

are not, significant methods, frameworks and datasets in

software defect prediction (RQ4 to RQ9). RQ4 to RQ9 are the

main research questions, and the remaining questions (RQ1 to

RQ3) help us evaluate the context of the primary studies. RQ1

to RQ3 give us a summary and synopsis of a particular area of

research in software defect prediction field.

Figure 2 shows the basic mind map of the systematic

literature review. The main objective of this systematic

literature review is to identify software prediction methods,

framework and datasets used in software defect prediction.

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 3

http://journal.ilmukomputer.org

Figure 2 Basic Mind Map of the SLR on Software Defect Prediction

2.3 Search Strategy

The search process (Step 4) consists of some activities,

such as selecting digital libraries, defining the search string,

executing a pilot search, refining the search string and

retrieving an initial list of primary studies from digital libraries

matching the search string. Before starting the search, an

appropriate set of databases must be chosen to increase the

probability of finding highly relevant articles. The most

popular literature databases in the field are searched to have the

broadest set of studies possible. A broad perspective is

necessary for an extensive and broad coverage of the literature.

Here is the list of the digital databases searched:

 ACM Digital Library (dl.acm.org)

 IEEE eXplore (ieeexplore.ieee.org)

 ScienceDirect (sciencedirect.com)

 Springer (springerlink.com)

 Scopus (scopus.com)

The search string was developed according to the

following steps:

1. Identification of the search terms from PICOC,

especially from Population and Intervention

2. Identification of search terms from research questions

3. Identification of search terms in relevant titles,

abstracts and keywords

4. Identification of synonyms, alternative spellings and

antonyms of search terms

5. Construction of sophisticated search string using

identified search search terms, Boolean ANDs and

ORs

The following search string was eventually used:

(software OR applicati* OR systems) AND (fault* OR

defect* OR quality OR error-prone) AND (predict*

OR prone* OR probability OR assess* OR detect* OR

estimat* OR classificat*)

The adjustment of the search string was conducted, but the

original one was kept, since the adjustment of the search string

would dramatically increase the already extensive list of

irrelevant studies. The search string was subsequently adjusted

to suit the specific requirements of each database. The

databases were searched by title, keyword and abstract. The

search was limited by the year of publication: 2000-2013. Two

kinds of publication namely journal papers and conference

proceedings were included. The search was limited only

articles published in English.

2.4 Study Selection

The inclusion and exclusion criteria were used for

selecting the primary studies,. These criteria are shown in

Table 3.
Table 3 Inclusion and Exclusion Criteria

Inclusion

Criteria

Studies in academic and industry using large and small
scale data sets

Studies discussing and comparing modeling performance

in the area of software defect prediction

For studies that have both the conference and journal
versions, only the journal version will be included

For duplicate publications of the same study, only the most

complete and newest one will be included

Exclusion

Criteria

Studies without a strong validation or including
experimental results of software defect prediction

Studies discussing defect prediction datasets, methods,

frameworks in a context other than software defect
prediction

Studies not written in English

Software package Mendeley (http://mendeley.com) was

used to store and manage the search results. The detailed search

process and the number of studies identified at each phase are

shown in Figure 3. As shown in Figure 3, the study selection

process (Step 5) was conducted in two steps: the exclusion of

primary studies based on the title and abstract and the exclusion

of primary studies based on the full text. The literature review

studies and other studies which do not include experimental

results are excluded. The similarity degree of the study with

software defect prediction is also the inclusion of studies.

Start

Select digital libraries

Define search string

Execute pilot search

Refine search string

Retrieve initial list of primary

studies

(2117)

yes

Exclude primary studies based on

title and abstract

(213)

Exclude primary studies based on

full text

 (71)

Make a final list of included

primary studies

(71)

End

Majority of

known primary

studies found?

no

Digital

Libraries

 ACM Digital Library (474)

 IEEE Explore (785)

 ScienceDirect (276)

 SpringerLink (339)

 Scopus (243)

Figure 3 Search and Selection of Primary Studies

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 4

http://journal.ilmukomputer.org

The final list of selected primary studies for the first stage

had 71 primary studies. Then, the full texts of 71 primary

studies were analyzed. In addition to the inclusion and

exclusion criteria, the quality of the primary studies, their

relevance to the research questions and study similarity were

considered. Similar studies by the same authors in various

journals were removed. 71 primary studies remained after the

exclusion of studies based on the full text selection. The

complete list of selected studies is provided in last section

section of this paper (Table 6).

2.5 Data Extraction

The selected primary studies are extracted to collect the

data that contribute to addressing the research questions

concerned in this review. For each of the 71 selected primary

studies, the data extraction form was completed (Step 6). The

data extraction form was designed to collect data from the

primary studies needed to answer the research questions. The

properties were identified through the research questions and

analysis we wished to introduce. Six properties were used to

answer the research questions shown in Table 4. The data

extraction is performed in an iterative manner.

Table 4 Data Extraction Properties Mapped to Research Questions

Property Research Questions

Researchers and Publications RQ1, RQ2

Research Trends and Topics RQ3

Software Defect Datasets RQ4

Software Metrics RQ4

Software Defect Prediction Methods RQ5, RQ6, RQ7, RQ8

Software Defect Prediction Frameworks RQ9

2.6 Study Quality Assessment and Data Synthesis

The study quality assessment (Step 8) can be used to guide

the interpretation of the synthesis findings and to define the

strength of the elaborated inferences. The goal of data synthesis

is to aggregate evidence from the selected studies for

answering the research questions. A single piece of evidence

might have small evidence force, but the aggregation of many

of them can make a point stronger. The data extracted in this

review include both quantitative data and qualitative data.

Different strategies were employed to synthesize the extracted

data pertaining to different kinds of research questions.

Generally, the narrative synthesis method was used. The data

were tabulated in a manner consistent with the questions. Some

visualization tools, including bar charts, pie charts, and tables

were also used to enhance the presentation of the distribution

of software defect prediction methods and their accuracy data.

2.7 Threats to Validity

This review aims to analyze the studies on software defect

prediction based on statistical and machine learning

techniques. This review is not aware about the existence of

biases in choosing the studies. The searching was not based on

manual reading of titles of all published papers in journals.

This means that this review may have excluded some software

defect prediction papers from some conference proceedings or

journals.

This review did not exclude studies from conference

proceedings because experience reports are mostly published

in conference proceedings. Therefore, a source of information

about the industry’s experience is included. Some systematic

literature reviews, for example (Jorgensen and Shepperd 2007)

did not use conference proceedings in their review because

workload would increase significantly. A systematic literature

review that included studies in conference proceedings as the

primary studies is conducted by Catal and Diri (Catal and Diri

2009a).

3 RESEARCH RESULTS

3.1 Significant Journal Publications

In this literature review, 71 primary studies that analyze

the performance of software defect prediction are included.

The distribution over the years is presented to show how the

interest in software defect prediction has changed over time. A

short overview of the distribution studies over the years is

shown in Figure 4. More studies were published since 2005,

indicating that more contemporary and relevant studies are

included. It should be noted that the PROMISE repository was

developed in 2005, and researchers began to be aware of the

use of public datasets. Figure 4 also shows that the research

field on software defect prediction is still very much relevant

today.

Figure 4 Distribution of Selected Studies over the Years

According to the selected primary studies, the most

important software defect prediction journals are displayed in

Figure 5. Note that the conference proceedings are not included

in this graph.

Figure 5 Journal Publications and Distribution of Selected Studies

Table 5 shows the Scimago Journal Rank (SJR) value and

Q categories (Q1-Q4) of the most important software defect

prediction journals. Journal publications are ordered according

to their SJR value.

2
3

2
3

4 4
5

7

5
6 6

7

11

6

0

2

4

6

8

10

12

1995 2000 2005 2010 2015

N
u

m
b

er
 o

f
S

tu
d

ie
s

Year

1

1

1

1

1

1

2

2

3

3

4

4

4

5

6

9

0 2 4 6 8 10

Journal of Software

International Journal of Software…

IEEE Transactions on Knowledge…

IEEE Software

Automated Software Engineering

Advanced Science Letters

IET Software

Empirical Software Engineering

Software Quality Journal

IEEE Transactions on Systems,…

Information Sciences

Information and Software Technology

IEEE Transactions on Reliability

Expert Systems with Applications

Journal of Systems and Software

IEEE Transactions on Software…

Number of Publications

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 5

http://journal.ilmukomputer.org

Table 5 Scimago Journal Rank (SJR) of Selected Journals

No Journal Publications SJR Q Category

1 IEEE Transactions on Software

Engineering

3.39 Q1 in Software

2 Information Sciences 2.96 Q1 in Information

Systems

3 IEEE Transactions on Systems,
Man, and Cybernetics

2.76 Q1 in Artificial
Intelligence

4 IEEE Transactions on Knowledge

and Data Engineering

2.68 Q1 in Information

Systems

5 Empirical Software Engineering 2.32 Q1 in Software

6 Information and Software
Technology

1.95 Q1 in Information
Systems

7 Automated Software Engineering 1.78 Q1 in Software

8 IEEE Transactions on Reliability 1.43 Q1 in Software

9 Expert Systems with Applications 1.36 Q2 in Computer
Science

10 Journal of Systems and Software 1.09 Q2 in Software

11 Software Quality Journal 0.83 Q2 in Software

12 IET Software 0.55 Q2 in Software

13 Advanced Science Letters 0.24 Q3 in Computer
Science

14 Journal of Software 0.23 Q3 in Software

15 International Journal of Software

Engineering and Its Application

0.14 Q4 in Software

3.2 Most Active and Influential Researchers

From the selected primary studies, researchers who

contributed very well and who are very active in the software

defect prediction research field were investigated and

identified. Figure 6 shows the most active and influential

researchers in the software defect prediction field. The

researchers were listed according to the number of studies

included in the primary studies. It should be noted that Taghi

Khoshgoftaar, Tim Menzies, Qinbao Song, Martin Shepperd,

Norman Fenton, Cagatay Catal, Burak Turhan, Ayse Bener,

Huanjing Wang, Yan Ma, Bojan Cukic, and Ping Guo are

active researchers on software defect prediction.

Figure 6 Influential Researchers and Number of Studies

3.3 Research Topics in the Software Defect Prediction Field

Software defect prediction is a significant research topic

in the software engineering field (Song et al., 2011). Analysis

of the selected primary studies revealed that current software

defect prediction research focuses on five topics:

1. Estimating the number of defects remaining in

software systems, using the estimation algorithm

(Estimation)

2. Discovering defect associations using the association

rule algorithm (Association)

3. Classifying the defect-proneness of software modules

typically into two classes namely defect-prone and

not defect-prone using the classification algorithm

(Classification)

4. Clustering the software defect based on object using

the clustering algorithm (Clustering)

5. Analyzing and pre-processing the software defect

datasets (Dataset Analysis)

The first type of work (Estimation) applies statistical

approaches (Ostrand, Weyuker, & Bell, 2005), capture-

recapture models (Emam and Laitenberger 2001), and neural

network (Benaddy and Wakrim 2012) (Zhang and Chang

2012) to estimate the number of defects remaining in softwares

with inspection data and process quality data. The prediction

result can be used as an important tool to help software

developers (Kenny, 1993), and can be used to control the

software process and gauge the likely delivered quality of a

software system (Fenton and Neil 1999).

The second type of work (Association) uses association

rule mining algorithms from the data mining community to

expose software defect associations (Shepperd, Cartwright, &

Mair, 2006) (Karthik and Manikandan 2010) (C.-P. Chang,

Chu, & Yeh, 2009). This second type of work can be used for

three purposes (Song et al., 2011). Firstly, to find as many

related defects as possible to the captured defects and

consequently, make more effective improvements to the

software. This may be useful as it permits more focused testing

and more effective use of limited testing resources. Secondly,

to evaluate the results from software reviewers during an

inspection. Thus, the work should be reinspected for

completeness. Thirdly, to assist software development

managers in improving the software development process

through analysis of the reasons why some defects frequently

occur together. Managers can than devise corrective action, if

the analysis leads to the identification of a process problem.

The third type of work (Classification) classifies software

modules as defect-prone and non-defect-prone by means of

metric based classification (Khoshgoftaar et al. 2000) (Li and

Reformat 2007) (Cukic and Singh 2004) (Menzies, Greenwald,

& Frank, 2007) (Lessmann, Baesens, Mues, & Pietsch, 2008)

(Song et al., 2011). The classification algorithm is a popular

machine learning approach for software defect prediction

(Lessmann et al., 2008). It categorizes the software code

attributes into defective or not defective, which is completed

by means of a classification model derived from software

metrics data based on the previous development projects

(Gayatri, Reddy, & Nickolas, 2010). The classification

algorithm is able to predict which components are more likely

to be defect-prone which supports a better targeted testing

resources. If an error is reported during system tests or from

field tests, that module’s fault data is marked as 1, otherwise 0.

For prediction modeling, software metrics are used as

independent variables and fault data is used as the dependent

variable (Catal, 2011). Parameters of the prediction model are

computed by using previous software metrics and fault data.

Various types of classification algorithms have been applied

for software defect prediction (Lessmann et al., 2008),

including logistic regression (Denaro, 2000), decision trees

(Khoshgoftaar and Seliya, 2002) (Taghi M Khoshgoftaar,

Seliya, & Gao, 2005), neural networks (Park, Oh, & Pedrycz,

2013) (Wang and Yu 2004) (Zheng, 2010), and naive bayes

(Menzies et al., 2007).

The fourth type of work (Clustering) uses clustering

algorithms from the data mining community to capture

software defect clusters. Unsupervised learning methods like

clustering may be used for defect prediction in software

modules, more so in those cases where fault labels are not

available. The K-Means algorithm was proposed by Bishnu

0
2
4
6
8

10
12

N
u
m

b
er

 o
f

S
tu

d
ie

s

Researchers

First Author Non-First Author

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 6

http://journal.ilmukomputer.org

and Bhattacherjee (2012) for predicting defect in program

modules (Bishnu and Bhattacherjee 2012). Quad Trees are

applied for finding the initial cluster centers to be the input to

the K-Means Algorithm. The concept of clustering gain has

been used to define the quality of clusters for measuring the

Quad Tree-based initialization algorithm. The clusters

generated by the Quad Tree-based algorithm were found to

have maximum gain values (Bishnu and Bhattacherjee 2012).

The fifth type of work (Dataset Analysis) focuses on

analyzing and pre-processing the software defect datasets.

Some researchers conducted the dataset pre-processing using

some methods, while others analyzed software defect datasets

in multiple aspect of views. (Gray, Bowes, Davey, Sun, &

Christianson, 2012) demonstrated and explained why NASA

MDP datasets require significant pre-processing in order to be

suitable for defect prediction. They noted that the bulk of

defect prediction experiments based on the NASA Metrics

Data Program datasets may have led to erroneous findings.

This is mainly due to repeated data points potentially caused

by redundancy in the amount of training and testing data.

Figure 7 shows the total distribution of research topics on

software defect prediction from 2000 until 2013. 77.46% of the

research studies are related to classification topics, 14.08% of

the studies focused on estimation techniques, and 5.63% of the

primary studies are concerned with dataset analysis topics.

Clustering and association are minor research topics with only

1.41% coverage. It can be concluded that most of the software

defect prediction researchers selected classification as their

research topics. There are three possible reasons of why

researchers focus on this topic. As the first reason,

classification topics precisely match with the industrial needs

that require some methods to predict which modules are more

likely to be defect-prone. Thus, the result of prediction can be

used to support better targeted testing resources. The second

reason is related to the NASA MDP dataset that is mostly ready

for classification methods. The third possible reason for a lack

of studies in clustering and association related topics is that

clustering and association methods usually yield undesirable

performance which cannot be published in the literature.

Figure 7 Distribution of Research Topics

3.4 Datasets Used for Software Defect Prediction

A dataset is a collection of data used for some specific

machine learning purpose (Sammut and Webb 2011). A

training set is a data set that is used as input to a learning

system, which analyzes it to learn a model. A test set or

evaluation set is a data set containing data that are used to

evaluate the model learned by a learning system. A training set

may be further divided into a growing set and a pruning set,

where the training set and the test set that contain disjoint sets

of data, the test set is known as a holdout set.

One of the most critical problems for software defect

prediction studies is the usage of non-public datasets (Catal and

Diri 2009a). Numerous companies developed defect prediction

models using proprietary data and presented these models in

conferences. However, it is impossible to compare results of

such studies with results of the proposed models, because their

datasets cannot be assesed. Machine learning researchers had

similar problems in the 1990s, and they developed a repository

called University of California Irvine (UCI). Inspired by the

UCI effort, software engineering researchers developed the

PROMISE repository which has numerous public datasets in

2005. NASA software defect prediction datasets are located in

PROMISE. The ARFF format is used as a default format file

that makes it possible to use these datasets directly from

WEKA or RapidMiner, an open source machine learning

software.

In this literature review, 71 primary studies that analyzed

the performance of software defect prediction are included.

Figure 8 shows the distribution of dataset types from 2000 until

2013. 64.79% of the research studies used public datasets and

35.21% of the research studies used private datasets. Public

datasets are mostly located in the PROMISE and NASA MDP

(metrics data program) repositories and they are distributed

freely. Private datasets belong to private companies and they

are not distributed as public datasets.

Figure 8 Total Distribution of Datasets

The distribution over the years is presented to show how

the interest in dataset types has changed over time.

Unfortunately, totally 35.21% of the studies used private

datasets. This means that only the result of one study from three

studies can be compared and it is repeatable. However, it is not

possible to compare the results of such studies with the results

of the proposed models because their datasets are not

distributed as public. The use of standard datasets make the

research repeatable, refutable, and verifiable (Catal and Diri

2009a). The distribution of the primary studies over the years,

and per source, is presented in Figure 9. More studies have

been published, and more public datasets have been used for

the software defect prediction research since 2005. As

mentioned earlier, the PROMISE repository was developed in

2005. In addition, there is increased awareness among

researchers on the use of public datasets.

14.08%

1.41%

77.46%

1.41%
5.63%

Estimation Association Classification

Clustering Dataset Analysis

35.21%

64.79%

Private Dataset Public Dataset

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 7

http://journal.ilmukomputer.org

Figure 9 Distribution of Private and Public Datasets

3.5 Methods Used in Software Defect Prediction

As shown in Figure 10, since 2000, nineteen methods have

been applied and proposed as the best method to predict

software defects. A summary of the state-of-the-art methods

used in software defect prediction is shown in Figure 10 and

Table 6.

Figure 10 Methods Used in Software Defect Prediction

3.6 Most Used Methods in Software Defect Prediction

From the nineteen methods shown in Figure 10 in Section

3.5, seven most applied classification methods in software

defect prediction are identified. The methods are shown in

Figure 11. They are:

1. Logistic Regression (LR)

2. Naïve Bayes (NB)

3. K-Nearest Neighbor (k-NN)

4. Neural Network (NN)

5. Decision Tree (DT)

6. Support Vector Machine (SVM)

7. Random Forest (RF)

Figure 11 Most Used Methods in Software Defect Prediction

NB, DT, NN and RF are the four most frequently used

ones. They were adopted by 75% of the selected studies, as

illustrated in Figure 12.

Figure 12 Distribution of the Studies over Type of Methods

3.7 Method Perform Best for Software Defect Prediction

While many studies in the software defect prediction

individually report the comparative performance of the

modelling techniques used, there is no strong consensus on

which performs best when the studies are looked at individual.

Bibi et al. (Bibi, Tsoumakas, Stamelos, & Vlahavas, 2008)

have reported that Regression via Classification (RvC) works

very well. Hall et al. highlighted that studies using Support

Vector Machine (SVM) perform less well. These may be

performing bellow expectation as they require parameter

optimization for the best performance (T. Hall et al., 2012).

C4.5 seems to perform bellow expectation if they include

imbalanced class distribution of datasets, as the algorithm

seems to be sensitive to this (Arisholm, Briand, & Fuglerud,

2007) (Arisholm, Briand, & Johannessen, 2010).

Naïve Bayes (NB) and Logistic Regression (LR) seem to

be the methods used in models that performs relatively well in

the field of software defect prediction (Menzies et al., 2007)

(Song et al., 2011). NB is a well understood algorithm and

commonly in use. Studies using Random Forests (RF) did not

perform as well as expected (T. Hall et al., 2012). However,

many studies using the NASA dataset employ RF and report

good performanc (Lessmann et al., 2008).

Some studies on software defect prediction indicated that

Neural Network (NN) has a good accuracy as a classifier

(Lessmann et al., 2008) (Benaddy and Wakrim 2012) (Quah,

Mie, Thwin, & Quah, 2003) (T M Khoshgoftaar, Allen,

Hudepohl, & Aud, 1997). NN has been shown to be more

adequate for the problem on the complicated and nonlinear

relationship between software metrics and defect-proneness of

2

3

2 2 2

3 3

1 1 1

0

1

4

00 0 0

1

2

1

2

6

4

5

6 6

7

6

0

1

2

3

4

5

6

7

8

1998 2000 2002 2004 2006 2008 2010 2012 2014

N
u
m

b
er

 o
f

S
tu

d
ie

s

Year

Private Dataset Public Dataset

0 2 4 6 8 10 12 14 16

FNR: Fuzzy Nonlinear Regression

EM: Expectation-Maximum

CR: Capture Recapture

NB: Naive Bayes

k-NN: k-Nearest Neighbor

NN: Neural Network

DT: Decision Tree

SVM: Support Vector Machine

LiR: Linear Regression

RF: Random Forest

AR: Association Rule

MBR: Memory based Reasoning

LR: Logistic Regression

FIS: Fuzzy Inference Systems

LDA: Linear Discriminant Analysis

RvC: Regression via Classification

ACO: Ant Colony Optimization

GP: Genetic Programming

kM: k-Means

Number of Studies

5

14

4

9

11

4

6

0

2

4

6

8

10

12

14

16

LR NB k-NN NN DT SVM RF

N
u

m
b

er
 o

f
S

tu
d

ie
s

Methods

9.43%

26.42%

7.55%
15.09%

20.75%

7.55%

11.32% LR

NB

k-NN

NN

DT

SVM

RF

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 8

http://journal.ilmukomputer.org

software modules (Zheng 2010). However, the practicability of

NN is limited due to difficulty in selecting appropriate

parameters of network architecture, including number of

hidden neuron, learning rate, momentum and training cycles

(Lessmann et al., 2008).

However, models seem to have performed best where the

right technique has been selected for the right set of data. No

particular classifiers that performs the best for all the datasets

(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011).

Therefore, the comparisons and benchmarking results of defect

prediction using machine learning classifiers indicate that the

poor accuracy level is dominant (Sandhu, Kumar, & Singh,

2007) (Lessmann et al., 2008), significant performance

differences could not be detected (Lessmann et al., 2008) and

no particular classifiers perform the best for all the datasets

(Challagulla, Bastani, and Paul, 2005) (Song et al., 2011).

3.8 Proposed Method Improvements for Software Defect

Prediction

Researchers proposed some techniques for improving the

accuracy of machine learning classifier for software defect

prediction. Recent proposed techniques try to increase the

prediction accuracy of a generated model by: 1) modifying and

ensembling some machine learning methods (Mısırlı, Bener, &

Turhan, 2011) (Tosun, Turhan, & Bener, 2008), 2) using

boosting algorithm (Zheng, 2010) (Jiang, Li, Zhou, & Member,

2011), 3) adding feature selection (Gayatri et al. 2010)

(Khoshgoftaar and Gao, 2009) (Catal and Diri 2009b) (Song et

al., 2011), 4) by using parameter optimization for some

classifiers (Peng and Wang 2010) (Lin, Ying, Chen, & Lee,

2008) (X. C. Guo, Yang, Wu, Wang, & Liang, 2008).

However, eventhough various defect prediction methods

have been proposed, but none has been proven to be

consistently accurate (Challagulla et al., 2005) (Lessmann et

al., 2008). The accurate and reliable classification algorithm to

build a better prediction model is an open issue in software

defect prediction. There is a need for an accurate defect

prediction framework which has to be more robust to noise and

other problems associated with on datasets.

3.8.1 Feature Selection

Feature selection is the study of algorithms for reducing

dimensionality of data to improve machine learning

performance. For a dataset with N features and M dimensions

(or features, attributes), feature selection aims to reduce M to

M’ and M’ ≤ M (Sammut and Webb 2011). It is an important

and widely used approach to dimensionality reduction.

Another effective approach is feature extraction. One of the

key distinctions of the two approaches lies at their outcomes.

Assuming we have four features F1, F2, F3, F4, if both

approaches result in 2 features, the 2 selected features are a

subset of 4 original features (say, F1, F3), but the 2 extracted

features are some combination of the 4 original features.

Feature selection is commonly used in applications where

original features need to be retained. Some examples are

document categorization, medical diagnosis and prognosis as

well as gene-expression profiling. The benefits of feature

selection are multifold: it helps improve machine learning in

terms of predictive accuracy, comprehensibility, learning

efficiency, compact models, and effective data collection. The

objective of feature selection is to remove irrelevant and/or

redundant features and retain only relevant features (Maimon

and Rokach 2010). Some researchers called irrelevant and

redundant feature by noisy attribute (Khoshgoftaar and Van

Hulse 2009). Irrelevant features can be removed without

affecting learning performance. Redundant features are a type

of irrelevant features. The distinction is that a redundant feature

implies the copresence of another feature; individually, each

feature is relevant, but the removal of either one will not affect

learning performance.

Three classic methods of feature selection are filter,

wrapper, and embedded. Research shows that a classifier with

embedded feature selection capability can beneft from feature

selection in terms of learning performance. A filter model

relies on measures about the intrinsic data properties. Mutual

information and data consistency are two examples of

measures about data properties. A wrapper model involves a

learning algorithm (classifier) in determining the feature

quality. For instance, if removing a feature does not affect the

classifier’s accuracy, the feature can be removed. Obviously,

this way feature selection is adapted to improving a particular

classification algorithm. To determine if the feature should be

selected or removed, it needs to build a classifier every time

when a feature is considered. Hence, the wrapper model can be

quite costly. An embedded model embeds feature selection in

the learning of a classifier. The best example can be found in

decision tree induction in which a feature has to be selected

first at each brainching point. When feature selection is

performed for data preprocessing, fillter and wrapper models

are often employed. When the purpose of feature selection goes

beyond improving learning performance (e.g., classifcation

accuracy), the most applied is the filter model.

3.8.2 Ensemble Machine Learning

Ensemble learning refers to the procedures employed to

train multiple learning machines and combine their outputs,

treating them as a “committee” of decision makers (Sammut

and Webb 2011). The principle is that the decision of the

committee, with individual predictions combined

appropriately, should have better overall accuracy, on average,

than any individual committee member. Numerous empirical

and theoretical studies have demonstrated that ensemble

models very often attain higher accuracy than single models.

The members of the ensemble might be predicting real-

valued numbers, class labels, posterior probabilities, rankings,

clusterings, or any other quantity. Therefore, their decisions

can be combined by many methods, including averaging,

voting, and probabilistic methods. The majority of ensemble

learning methods are generic as well as applicable across broad

classes of model types and learning tasks.

Several machine learning techniques do this by learning

an ensemble of models and using them in combination.

Prominent among these are schemes called bagging, boosting,

and stacking (Witten, Frank, & Hall, 2011). They can all, more

often than not, increase predictive performance over a single

model. They are general techniques that can be applied to

classification tasks and numeric prediction problems. Bagging,

boosting, and stacking have been developed over the last

couple of decades, and their performance is often astonishingly

good. Machine learning researchers have struggled to

understand why. And during that struggle, new methods have

emerged that are sometimes even better. For example, while

human committees rarely benefit from noisy distractions,

shaking up bagging by adding random variants of classifiers

can improve performance.

3.9 Proposed Frameworks for Software Defect Prediction

Three frameworks that are highly cited and therefore

influential in the software defect prediction field are the

Menzies et al. Framework (Menzies et al., 2007), Lessmann et

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 9

http://journal.ilmukomputer.org

al. Framework (Lessmann et al., 2008), and Song et al.

Framework (Song et al., 2011).

3.9.1 Menzies et al.’s Framework

Menzies et al. (2007) published a study which compared

the performance of two classification algorithms techniques to

predict software components containing defects (Menzies et

al., 2007). They used the NASA MDP repository, which

contained 10 different datasets. Many researchers have

explored issues like the relative merits of Halstead’s software

science measures, McCabe’s cyclomatic complexity and lines

of code counts for building defect predictors. However,

Menzies et al. (2007) claim that such debates are irrelevant

since how the attributes are used to build predictors is much

more important than which particular attributes are used, and

the choice of learning method is far more important than which

subset of the available data is used for learning (Menzies et al.,

2007). Their research revealed that a Naive Bayes classifier

had a mean probability of detection of 71 percent and mean

false alarms rates of 25 percent, after log filtering and attribute

selection based on InfoGain. Naive bayes significantly

outperformed the rule induction methods of J48 and OneR.

However, the choice of which attribute subset is used for

learning is not only circumscribed by the attribute subset itself

and available data, but also by attribute selectors, learning

algorithms, and data preprocessors. An intrinsic relationship

between a learning method and an attribute selection method is

well known. For example, Hall and Holmes (2003) concluded

that the backward elimination (BE) search is more suitable for

C4.5, but the forward selection (FS) search was well suited to

Naive Bayes (Hall and Holmes 2003). Therefore, Menzies et

al. chose the combination of all learning algorithm, data

preprocessing, and attribute selection method before building

prediction models. Figure 13 shows Menzies et al.’s software

defect prediction framework.

LEARNING SCHEME

Data Preprocessor

Feature Selectors

Learning Algorithms

Performance Report

Processed

Testing

Data

Training

Data

NASA

MDP

Datasets

Testing

Data

Processed

Training

Data

Data Preprocessing

Feature Selection

Testing and

Validation
Learning

Models

Log-Filtering

Info Gain

NB DT 1R

Figure 13 Menzies et al.’s Framework

(Compiled from (Menzies et al., 2007))

3.9.2 Lessmann et al.’s Framework

Lessmann et al. also conducted a follow up to Menzies et

al.’s framework on defect predictions (Lessmann et al., 2008).

However, Lessmann et al. did not perform attribute selection

when building prediction models. Lessmann et al. consider

three potential sources for bias: 1) relying on accuracy

indicators that are conceptually inappropriate for software

defect prediction and cross-study comparisons, 2) limiting use

of statistical testing procedures to secure empirical findings,

and 3) comparing classifiers over one or a small number of

proprietary datasets. Lessman et al. (2008) proposed a

framework for comparative software defect prediction

experiments. This framework is implemented on a large scale

empirical comparison of 22 classifiers over 10 datasets from

the NASA Metrics Data repository. An appealing degree of

predictive accuracy is observed, which supports the view that

the metric based classification is useful. However, the results

showed that no significant performance differences could be

detected among the top 17 classifiers. It indicates that the

importance of the particular classification algorithm may be

less than previously assumed. Figure 14 shows Lessman et

al.’s software defect prediction framework.

LEARNING SCHEME

Learning Algorithms

Performance Report

Training

Data

NASA

MDP

Datasets

Testing

Data

Testing and

Validation
Learning

Models
22 Classifiers

Figure 14 Lessmann et al.’s Framework

(Compiled from (Lessmann et al., 2008))

3.9.3 Song et al.’s Framework

Song et al. (Song et al., 2011) also conducted a follow-up

to the results of (Menzies et al., 2007) research on defect

predictions. Song et al. developed a general-purpose defect

prediction framework, which consists of two parts: scheme

evaluation and defect prediction. Scheme evaluation focuses

on evaluating the performance of a learning scheme, while

defect prediction focuses on building a final predictor using

historical data according to the learning scheme. Then the

predictor is used to predict the defect-prone components of a

new software. A learning scheme consists of 1) a data

preprocessor, 2) an attribute selector, and 3) a learning

algorithm. The main difference between Song et al.’s

framework and that of Menzies et al.’s framework lies in the

following. Song et al. chose the entire learning scheme, not just

one out of the learning algorithm, attribute selector, or data

preprocessor.

Song et al. also argued that Menzies et al’s attribute

selection approach is problematic and produced a bias in the

evaluation results. One reason is that they ranked attributes on

the entire dataset, including both the training and test data,

though the class labels of the test data should have been made

unknown to the predictor. However, it violated the intention of

the holdout strategy. The potential result is that they

overestimate the performance of their learning model and

thereby report a potentially misleading result. After ranking the

attributes, each individual attribute are evaluated separately

and the features with the highest scores are chosen.

Unfortunately, this approach cannot consider features with

complementary information, and does not account for attribute

dependence. It is also not capable of eliminating redundant

features because redundant features are likely to have similar

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 10

http://journal.ilmukomputer.org

rankings. They will all be selected as long as the features are

deemed relevant to the class, even though many of them are

highly correlated to each other. Figure 15 shows Song et al.’s

software defect prediction framework.

LEARNING SCHEME

Data Preprocessor

Feature Selectors

Learning Algorithms

Performance Report

Processed

Testing

Data

Training

Data

NASA

MDP

Datasets

Testing

Data

Processed

Training

Data

Data Preprocessing

Feature Selection

Testing and

Validation
Learning

Models

Log-Filtering

FS BE

NB DT 1R

Figure 15 Song et al.’s Framework

(Compiled from (Song et al., 2011))

4 CONCLUSION AND FUTURE WORKS

This literature review aims to identify and analyze the

trends, datasets, methods and frameworks used in software

defect prediction research betweeen 2000 and 2013. Based on

the designed inclusion and exclusion criteria, finally 71

software defect prediction studies published between January

2000 and December 2013 were remained and investigated.

This literature review has been undertaken as a systematic

literature review. Systematic literature review is defined as a

process of identifying, assessing, and interpreting all available

research evidence with the purpose to provide answers for

specific research questions.

Analysis of the selected primary studies revealed that

current software defect prediction research focuses on five

topics and trends: estimation, association, classification,

clustering and dataset analysis. The total distribution of defect

prediction methods is as follows. 77.46% of the research

studies are related to classification methods, 14.08% of the

studies focused on estimation methods, and 1.41% of the

studies concerned on clustering and association methods. In

addition, 64.79% of the research studies used public datasets

and 35.21% of the research studies used private datasets.

Nineteen different methods have been applied to predict

software defects. From the nineteen methods, seven most

applied methods in software defect prediction are identified.

They are Logistic Regression (LR), Naïve Bayes (NB), K-

Nearest Neighbor (k-NN), Neural Network (NN), Decision

Tree (DT), Support Vector Machine (SVM) and Random

Forest (RF)

Researchers proposed some techniques for improving the

accuracy of machine learning classifier for software defect

prediction by ensembling some machine learning methods, by

using boosting algorithm, by adding feature selection and by

using parameter optimization for some classifiers.

The results of this research also identified three

frameworks that are highly cited and therefore influential in the

software defect prediction field. They are the Menzies et al.

Framework, Lessmann et al. Framework, and Song et al.

Framework.

Unfortunatelly, the existing software defect prediction

framework revealed some problems. Unintentionally

misleading results and overoptimism on the part of the

researchers can result from incomplete validation mechanism.

Comprehensive evaluation of different prediction methods is

still an open issue in the field of software defect prediction

(Mende and Koschke 2009). More reliable research procedures

need to be developed, before the confident conclusion of

comparative studies of software prediction models can be made

(Lessmann et al., 2008) (Myrtveit, Stensrud, & Shepperd,

2005) (Song et al., 2011) (Menzies et al., 2010). This research

proposes a new comparison frameworks for software defect

prediction in order to fulfill the requirement for more

systematic and unbiased methods for comparing the

performance of machine-learning-based defect prediction.

Frameworks developed by Menzies et al., Lessmann et al.,

and Song et al. are missing in the processing of class imbalance

problem in datasets. Software defect datasets are suferring

from an imbalanced problem in datasets with very few

defective modules compared to defect-free ones (Wang and

Yao 2013) (Zhang and Zhang 2007). The most well-known

issue regarding the use of NASA datasets in classification

experiments is the variety levels of imbalanced class (Gray et

al. 2012). Class imbalance either reduces classifier

performance (Gray, Bowes, Davey, & Christianson, 2011).

The bagging as meta-learning method is used in this study to

overcome the class imbalance problem.

The issue of dealing with noisy data has not been

addressed adequately in the three frameworks. The noisy and

irrelevant features on software defect prediction results in

inefficient outcome of the model (Gayatri et al. 2010). The

software defect prediction accuracy decreases significantly

because the dataset contains noisy attributes. The accuracy of

software defect prediction improved when irrelevant and

redundant attributes are removed. The Lessmann et al.

framework does not address the issue regarding to the noisy

and irrelevant attribute problems. The Menzies et al. and Song

et al. frameworks employed the traditional feature selection

algorithms such as information gain, forward selection and

backward elimination. In this research, noisy attribute

problems were addressed by using metaheuristic optimization

methods, especially genetic algorithm and particle swarm

optimization. Cano et al. (2003) have shown that better results

in terms of higher classification accuracy can be obtained with

the metaheuristic optimization method than with many

traditional and non-evolutionary feature selection methods

(Cano, Herrera, & Lozano, 2003).

Finally, the list of primary studies is presented in Table 6.

This list is comprised of 6 attributes (year, primary studies,

publications, datasets, methods, and topics) and 71 primary

studies (from January 2000 to December 2013), and ordered by

year of publication.

Figure 16 shows the complete mind map, which presents

the results of the systematic literature review on software

defect prediction. Mind maps have been used to explore

relationships between ideas and elements of an argument and

to generate solutions to problems. It puts a new perspective on

things to see all the relevant issues and analyze choices in light

of the one big picture (Buzan and Griffiths 2013). It also makes

it easier to logically organize information and integrate new

knowledge. In this research the mind map is used to present the

results of the systematic literature review on software defect

prediction.

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 11

http://journal.ilmukomputer.org

Table 6 The List of Primary Studies in the Field of Software Defect Prediction

Year Primary Studies Publications Datasets Methods Topics

2000
(Khoshgoftaar and Allen 2000)

(Lyu, 2000)

IEEE Transactions on Reliability

Asia-Pacific Conference on Quality Software

Private

Private

Fuzzy Nonlinear Regression

Expectation-Maximum

Estimation

Classification

2001

(Khaled El Emam, Melo, & Machado, 2001)

(N. Fenton, Krause, & Neil, 2001)
(Shepperd and Kadoda 2001)

IEEE Transactions on Software Engineering

IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering

Private

Private
Private

Capture-Recapture Model

Naïve Bayes
k-Nearest Neighbor

Estimation

Classification
Estimation

2002
(Pizzi, Summers, & Pedrycz, 2002)
(Khoshgoftaar and Seliya 2002)

International Joint Conference on Neural Networks
IEEE Symposium on Software Metrics

Private
Private

Neural Network
Decision Tree (CART)

Classification
Classification

2003

(L. Guo, Cukic, & Singh, 2003)

(Quah et al., 2003)

(Güneş Koru and Tian 2003)

IEEE Conference on Automated Software Engineering

International Conference on Software Maintenance

Journal of Systems and Software

Public

Private

Private

Neural Network

Neural Network

Decision Tree

Classification

Estimation

Classification

2004

(Menzies, DiStefano, Orrego, & Chapman, 2004)

(Wang and Yu 2004)

(Kanmani, Uthariaraj, Sankaranarayanan, & Thambidurai, 2004)

(V. U. B. Challagulla et al., 2004)

IEEE Symposium on High Assurance Systems Engineering

IEEE Conference on Tools with Artificial Intelligence

ACM SIGSOFT Software Engineering Notes

IEEE Workshop on OO Real-Time Dependable Systems

Public

Private

Private

Public

Naïve Bayes

Neural Network

Neural Network

Naïve Bayes

Classification

Classification

Estimation

Classification

2005

(Taghi M Khoshgoftaar et al., 2005)

(Xing, Guo, & Lyu, 2005)

(Koru and Liu 2005)
(Ostrand et al., 2005)

Empirical Software Engineering

IEEE Symposium on Software Reliability Engineering

IEEE Software
IEEE Transactions on Software Engineering

Private

Private

Public
Private

Decision Tree

Support Vector Machine

Decision Tree and Naïve Bayes
Linear Regression

Classification

Classification

Classification
Estimation

2006

(Yan Ma, Guo, & Cukic, 2007)

(Shepperd et al., 2006)

(Taghi M. Khoshgoftaar, Seliya, & Sundaresh, 2006)

(V. Challagulla, Bastani, & Yen, 2006)

(Zhou and Leung 2006)

Advances in Machine Learning

IEEE Transactions on Software Engineering

Software Quality Journal

IEEE Conference on Tools with Artificial Intelligence

IEEE Transactions on Software Engineering

Public

Public

Private

Public

Public

Random Forest

Association Rule

k-Nearest Neighbor

Memory based Reasoning

Logistic Regression

Classification

Association

Estimation

Classification

Classification

2007

(Menzies et al., 2007)

(Li and Reformat 2007)

(Yan Ma et al., 2007)

(Pai and Dugan 2007)
(Seliya and Khoshgoftaar 2007)

(N. Fenton et al., 2007)

(Güneş Koru and Liu 2007)

IEEE Transactions on Software Engineering

IEEE Conference on Information Reuse and Integration

Advances in Machine Learning Applications in Software Engineering

IEEE Transactions on Software Engineering
Software Quality Journal

Information and Software Technology

Journal of Systems and Software

Public

Public

Public

Public
Public

Private

Public

Naïve Bayes

Fuzzy Inference System

Random Forest

Naïve Bayes
Expectation-Maximum

Naïve Bayes

Decision Tree

Classification

Classification

Classification

Classification
Classification

Classification

Classification

2008

(Lessmann et al., 2008)

(Bibi et al., 2008)

(Gondra, 2008)

(Vandecruys et al., 2008)

(Elish and Elish 2008)

IEEE Transactions on Software Engineering

Expert Systems with Applications

Journal of Systems and Software

Journal of Systems and Software

Journal of Systems and Software

Public

Private

Public

Public

Public

Random Forest, LR, LDA

Regression via Classification

Support Vector Machine

Ant Colony Optimization

Support Vector Machine

Classification

Estimation

Classification

Classification

Classification

2009

(Catal and Diri 2009a)

(Turhan, Kocak, & Bener, 2009)
(Seiffert, Khoshgoftaar, & Van Hulse, 2009)

(Khoshgoftaar and Gao 2009)

(Catal and Diri 2009b)

(Turhan, Menzies, Bener, & Di Stefano, 2009)

Expert Systems with Applications

Expert Systems with Applications
IEEE Transactions on Systems, Man, and Cybernetics

International Conference on Machine Learning and Applications

Information Sciences

Empirical Software Engineering

Public

Private
Public

Public

Public

Public

Random Forest

Static Call Graph Based Ranking
Boosting

Undersampling

Random Forest and Naïve Bayes

k-Nearest Neighbor

Classification

Classification
Classification

Classification

Classification

Classification

2010

(Menzies et al., 2010)

(Zheng, 2010)

(Liu, Khoshgoftaar, & Seliya, 2010)

(H. Wang, Khoshgoftaar, & Napolitano, 2010)

(Gayatri et al., 2010)
(Arisholm et al., 2010)

Automated Software Engineering

Expert Systems with Applications

IEEE Transactions on Software Engineering

International Conference on Machine Learning and Applications

World Congress on Engineering and Computer Science
Journal of Systems and Software

Public

Public

Public

Public

Public
Public

WHICH Meta-learning

Neural Network

Genetic Programming

Naïve Bayes (Ensemble)

Decision Tree
Decision Tree

Classification

Classification

Classification

Classification

Classification
Classification

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 12

http://journal.ilmukomputer.org

2011

(Catal, Sevim, & Diri, 2011)

(Song et al., 2011)
(Taghi M. Khoshgoftaar, Van Hulse, & Napolitano, 2011)

(Catal, Alan, & Balkan, 2011)

(R. H. Chang, Mu, & Zhang, 2011)

(Mısırlı et al., 2011)

(Azar and Vybihal 2011)

Expert Systems with Applications

IEEE Transactions on Software Engineering
IEEE Transactions on Systems, Man, and Cybernetics

Information Sciences

Journal of Software

Software Quality Journal

Information and Software Technology

Public

Public
Public

Public

Public

Public

Private

Naïve Bayes

Naïve Bayes (FS and BE)
Bagging

Naïve Bayes (LogNum)

Non-Negative Matrix Factorization

Naïve Bayes (Ensemble)

Ant Colony Optimizzation

Classification

Classification
Classification

Classification

Classification

Classification

Classification

2012

(Gray et al., 2012)

(Ying Ma, Luo, Zeng, & Chen, 2012)

(Benaddy and Wakrim 2012)

(Wong, Debroy, Golden, Xu, & Thuraisingham, 2012)
(Y. Peng, Wang, & Wang, 2012)

(Zhang and Chang 2012)

(Bishnu and Bhattacherjee 2012)

(Sun, Song, & Zhu, 2012)

(Pelayo and Dick 2012)

(Jin, Jin, & Ye, 2012)

(Cao, Qin, & Feng, 2012)

IET Software

Information and Software Technology

International Journal of Software Engineering and Its Applications

IEEE Transactions on Reliability
Information Sciences

International Conference on Natural Computation

IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Systems, Man, and Cybernetics

IEEE Transactions on Reliability

IET Software

Advanced Science Letters

Public

Public

Private

Private
Public

Private

Private

Public

Public

Public

Public

-

Transfer Naïve Bayes

Neural Network (SA)

Neural Network (RBF)
Decision Tree

Neural Network

k-Means

Decision Tree

Undersampling

Support Vector Machine

Neural Network

Dataset Analysis

Classification

Estimation

Classification
Classification

Estimation

Clustering

Classification

Classification

Classification

Classification

2013

(Park et al., 2013)

(Dejaeger, Verbraken, & Baesens, 2013)
(Shepperd, Song, Sun, & Mair, 2013)

(Wang and Yao 2013)

(Peters, Menzies, Gong, & Zhang, 2013)

(Radjenović et al., 2013)

Information Sciences

IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering

IEEE Transactions on Reliability

IEEE Transactions on Software Engineering

Information and Software Technology

Public

Public
Public

Public

Public

Public

Neural Network

Naïve Bayes
-

Adaboost

-

-

Classification

Classification
Dataset Analysis

Classification

Dataset Analysis

Dataset Analysis

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 13

http://journal.ilmukomputer.org

Figure 16 Complete Mind Map of the SLR on Software Defect Prediction

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 14

http://journal.ilmukomputer.org

REFERENCES

Arisholm, E., Briand, L. C., & Fuglerud, M. (2007). Data Mining

Techniques for Building Fault-proneness Models in Telecom

Java Software. Proceedings of the The 18th IEEE International

Symposium on Software Reliability, 215–224.

http://doi.org/10.1109/ISSRE.2007.22

Arisholm, E., Briand, L. C., & Johannessen, E. B. (2010). A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. Journal of Systems

and Software, 83(1), 2–17.

http://doi.org/10.1016/j.jss.2009.06.055

Azar, D., & Vybihal, J. (2011). An ant colony optimization algorithm

to improve software quality prediction models: Case of class

stability. Information and Software Technology, 53(4), 388–

393. http://doi.org/10.1016/j.infsof.2010.11.013

Benaddy, M., & Wakrim, M. (2012). Simulated Annealing Neural

Network for Software Failure Prediction. International Journal

of Software Engineering and Its Applications, 6(4).

Bibi, S., Tsoumakas, G., Stamelos, I., & Vlahavas, I. (2008).

Regression via Classification applied on software defect

estimation. Expert Systems with Applications, 34(3), 2091–

2101. http://doi.org/10.1016/j.eswa.2007.02.012

Bishnu, P. S., & Bhattacherjee, V. (2012). Software Fault Prediction

Using Quad Tree-Based K-Means Clustering Algorithm. IEEE

Transactions on Knowledge and Data Engineering, 24(6),

1146–1150. http://doi.org/10.1109/TKDE.2011.163

Boehm, B., & Basili, V. R. (2001). Top 10 list [software

development]. Computer, 34(1), 135–137.

Buzan, T., & Griffiths, C. (2013). Mind Maps for Business: Using the

ultimate thinking tool to revolutionise how you work (2nd

Edition). FT Press.

Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary

algorithms as instance selection for data reduction in KDD: an

experimental study. IEEE Transactions on Evolutionary

Computation, 7(6), 561–575.

Cao, H., Qin, Z., & Feng, T. (2012). A Novel PCA-BP Fuzzy Neural

Network Model for Software Defect Prediction. Advanced

Science Letters, 9(1), 423–428.

Catal, C. (2011). Software fault prediction: A literature review and

current trends. Expert Systems with Applications, 38(4), 4626–

4636.

Catal, C., Alan, O., & Balkan, K. (2011). Class noise detection based

on software metrics and ROC curves. Information Sciences,

181(21), 4867–4877.

Catal, C., & Diri, B. (2009a). A systematic review of software fault

prediction studies. Expert Systems with Applications, 36(4),

7346–7354.

Catal, C., & Diri, B. (2009b). Investigating the effect of dataset size,

metrics sets, and feature selection techniques on software fault

prediction problem. Information Sciences, 179(8), 1040–1058.

http://doi.org/10.1016/j.ins.2008.12.001

Catal, C., Sevim, U., & Diri, B. (2011). Practical development of an

Eclipse-based software fault prediction tool using Naive Bayes

algorithm. Expert Systems with Applications, 38(3), 2347–

2353. http://doi.org/10.1016/j.eswa.2010.08.022

Challagulla, V., Bastani, F., & Yen, I. (2006). A Unified Framework

for Defect Data Analysis Using the MBR Technique. 2006 18th

IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’06), 39–46.

http://doi.org/10.1109/ICTAI.2006.23

Challagulla, V. U. B., Bastani, F. B., & Paul, R. A. (2004). Empirical

Assessment of Machine Learning based Software Defect

Prediction Techniques. In 10th IEEE International Workshop

on Object-Oriented Real-Time Dependable Systems (pp. 263–

270). IEEE. http://doi.org/10.1109/WORDS.2005.32

Chang, C.-P., Chu, C.-P., & Yeh, Y.-F. (2009). Integrating in-process

software defect prediction with association mining to discover

defect pattern. Information and Software Technology, 51(2),

375–384. http://doi.org/10.1016/j.infsof.2008.04.008

Chang, R. H., Mu, X. D., & Zhang, L. (2011). Software Defect

Prediction Using Non-Negative Matrix Factorization. Journal

of Software, 6(11), 2114–2120.

http://doi.org/10.4304/jsw.6.11.2114-2120

Cukic, B., & Singh, H. (2004). Robust Prediction of Fault-Proneness

by Random Forests. 15th International Symposium on Software

Reliability Engineering, 417–428.

http://doi.org/10.1109/ISSRE.2004.35

Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward

Comprehensible Software Fault Prediction Models Using

Bayesian Network Classifiers. IEEE Transactions on Software

Engineering, 39(2), 237–257.

http://doi.org/10.1109/TSE.2012.20

Denaro, G. (2000). Estimating software fault-proneness for tuning

testing activities. In Proceedings of the 22nd International

Conference on Software engineering - ICSE ’00 (pp. 704–706).

New York, New York, USA: ACM Press.

El Emam, K., & Laitenberger, O. (2001). Evaluating capture-

recapture models with two inspectors. IEEE Transactions on

Software Engineering, 27(9), 851–864.

http://doi.org/10.1109/32.950319

El Emam, K., Melo, W., & Machado, J. C. (2001). The prediction of

faulty classes using object-oriented design metrics. Journal of

Systems and Software, 56(1), 63–75.

http://doi.org/10.1016/S0164-1212(00)00086-8

Elish, K. O., & Elish, M. O. (2008). Predicting defect-prone software

modules using support vector machines. Journal of Systems

and Software, 81(5), 649–660.

http://doi.org/10.1016/j.jss.2007.07.040

Fenton, N. E., & Neil, M. (1999). A critique of software defect

prediction models. IEEE Transactions on Software

Engineering, 25(5), 675–689.

http://doi.org/10.1109/32.815326

Fenton, N., Krause, P., & Neil, M. (2001). A Probabilistic Model for

Software Defect Prediction. IEEE Transactions on Software

Engineering, 44(0), 1–35.

Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P.,

& Mishra, R. (2007). Predicting software defects in varying

development lifecycles using Bayesian nets. Information and

Software Technology, 49(1), 32–43.

http://doi.org/10.1016/j.infsof.2006.09.001

Gayatri, N., Reddy, S., & Nickolas, A. V. (2010). Feature Selection

Using Decision Tree Induction in Class level Metrics Dataset

for Software Defect Predictions. Lecture Notes in Engineering

and Computer Science, 2186(1), 124–129.

Gondra, I. (2008). Applying machine learning to software fault-

proneness prediction. Journal of Systems and Software, 81(2),

186–195. http://doi.org/10.1016/j.jss.2007.05.035

Gray, D., Bowes, D., Davey, N., & Christianson, B. (2011). The

misuse of the NASA Metrics Data Program data sets for

automated software defect prediction. 15th Annual Conference

on Evaluation & Assessment in Software Engineering (EASE

2011), 96–103.

Gray, D., Bowes, D., Davey, N., Sun, Y., & Christianson, B. (2012).

Reflections on the NASA MDP data sets. IET Software, 6(6),

549.

Güneş Koru, a., & Liu, H. (2007). Identifying and characterizing

change-prone classes in two large-scale open-source products.

Journal of Systems and Software, 80(1), 63–73.

http://doi.org/10.1016/j.jss.2006.05.017

Güneş Koru, A., & Tian, J. (2003). An empirical comparison and

characterization of high defect and high complexity modules.

Journal of Systems and Software, 67(3), 153–163.

http://doi.org/10.1016/S0164-1212(02)00126-7

Guo, L., Cukic, B., & Singh, H. (2003). Predicting fault prone

modules by the Dempster-Shafer belief networks. In

Proceedings of the 18th IEEE International Conference on

Automated Software Engineering, 2003 (pp. 249–252). IEEE

Comput. Soc. http://doi.org/10.1109/ASE.2003.1240314

Guo, X. C., Yang, J. H., Wu, C. G., Wang, C. Y., & Liang, Y. C.

(2008). A novel LS-SVMs hyper-parameter selection based on

particle swarm optimization. Neurocomputing, 71(16-18),

3211–3215. http://doi.org/10.1016/j.neucom.2008.04.027

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 15

http://journal.ilmukomputer.org

Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection

techniques for discrete class data mining. IEEE Transactions

on Knowledge and Data Engineering, 15(6), 1437–1447.

Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A

Systematic Literature Review on Fault Prediction Performance

in Software Engineering. IEEE Transactions on Software

Engineering, 38(6), 1276–1304.

IEEE. (1990). IEEE Standard Glossary of Software Engineering

Terminology (Vol. 121990). Inst. of Electrical and Electronical

Engineers.

J. Pai, G., & Bechta Dugan, J. (2007). Empirical Analysis of Software

Fault Content and Fault Proneness Using Bayesian Methods.

IEEE Transactions on Software Engineering, 33(10), 675–686.

http://doi.org/10.1109/TSE.2007.70722

Jiang, Y., Li, M., Zhou, Z., & Member, S. (2011). Software Defect

Detection with rocus. Journal of Computer Science and

Technology, 26(2), 328–342. http://doi.org/10.1007/s11390-

011-1135-6

Jin, C., Jin, S.-W., & Ye, J.-M. (2012). Artificial neural network-

based metric selection for software fault-prone prediction

model. IET Software, 6(6), 479. http://doi.org/10.1049/iet-

sen.2011.0138

Jones, C., & Bonsignour, O. (2012). The Economics of Software

Quality. Pearson Education, Inc.

Jorgensen, M., & Shepperd, M. (2007). A Systematic Review of

Software Development Cost Estimation Studies. IEEE

Transactions on Software Engineering, 33(1).

Kanmani, S., Uthariaraj, V. R., Sankaranarayanan, V., &

Thambidurai, P. (2004). Object oriented software quality

prediction using general regression neural networks. ACM

SIGSOFT Software Engineering Notes, 29(5), 1.

http://doi.org/10.1145/1022494.1022515

Karthik, R., & Manikandan, N. (2010). Defect association and

complexity prediction by mining association and clustering

rules. 2010 2nd International Conference on Computer

Engineering and Technology, V7–569–V7–573.

http://doi.org/10.1109/ICCET.2010.5485608

Kenny, G. Q. (1993). Estimating defects in commercial software

during operational use. IEEE Transactions on Reliability,

42(1), 107–115.

Khoshgoftaar, T. M., & Allen, E. B. (2000). Prediction of software

faults using fuzzy nonlinear regression modeling. Proceedings.

Fifth IEEE International Symposium on High Assurance

Systems Engineering (HASE 2000), 281–290.

http://doi.org/10.1109/HASE.2000.895473

Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J.

(1997). Application of neural networks to software quality

modeling of a very large telecommunications system. IEEE

Transactions on Neural Networks / a Publication of the IEEE

Neural Networks Council, 8(4), 902–9.

http://doi.org/10.1109/72.595888

Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. P.

(2000). Classification-tree models of software-quality over

multiple releases. IEEE Transactions on Reliability, 49(1), 4–

11. http://doi.org/10.1109/24.855532

Khoshgoftaar, T. M., & Gao, K. (2009). Feature Selection with

Imbalanced Data for Software Defect Prediction. 2009

International Conference on Machine Learning and

Applications, 235–240.

http://doi.org/10.1109/ICMLA.2009.18

Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-based software quality

estimation models for fault prediction. Proceedings Eighth

IEEE Symposium on Software Metrics, 203–214.

http://doi.org/10.1109/METRIC.2002.1011339

Khoshgoftaar, T. M., Seliya, N., & Gao, K. (2005). Assessment of a

New Three-Group Software Quality Classification Technique:

An Empirical Case Study. Empirical Software Engineering,

10(2), 183–218.

Khoshgoftaar, T. M., Seliya, N., & Sundaresh, N. (2006). An

empirical study of predicting software faults with case-based

reasoning. Software Quality Journal, 14(2), 85–111.

http://doi.org/10.1007/s11219-006-7597-z

Khoshgoftaar, T. M., & Van Hulse, J. (2009). Empirical Case Studies

in Attribute Noise Detection. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews),

39(4), 379–388.

Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2011).

Comparing Boosting and Bagging Techniques With Noisy and

Imbalanced Data. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 41(3), 552–568.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing

Systematic Literature Reviews in Software Engineering. EBSE

Technical Report Version 2.3, EBSE-2007-.

Koru, A. G., & Liu, H. (2005). An investigation of the effect of

module size on defect prediction using static measures. In

Proceedings of the 2005 workshop on Predictor models in

software engineering - PROMISE ’05 (Vol. 30, pp. 1–5). New

York, New York, USA: ACM Press.

http://doi.org/10.1145/1082983.1083172

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008).

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings. IEEE

Transactions on Software Engineering, 34(4), 485–496.

Li, Z., & Reformat, M. (2007). A practical method for the software

fault-prediction. In 2007 IEEE International Conference on

Information Reuse and Integration (pp. 659–666). IEEE.

http://doi.org/10.1109/IRI.2007.4296695

Lin, S.-W., Ying, K.-C., Chen, S.-C., & Lee, Z.-J. (2008). Particle

swarm optimization for parameter determination and feature

selection of support vector machines. Expert Systems with

Applications, 35(4), 1817–1824.

http://doi.org/10.1016/j.eswa.2007.08.088

Liu, Y., Khoshgoftaar, T. M., & Seliya, N. (2010). Evolutionary

Optimization of Software Quality Modeling with Multiple

Repositories. IEEE Transactions on Software Engineering,

36(6), 852–864.

Lyu, M. R. (2000). Software quality prediction using mixture models

with EM algorithm. In Proceedings First Asia-Pacific

Conference on Quality Software (pp. 69–78). IEEE Comput.

Soc. http://doi.org/10.1109/APAQ.2000.883780

Ma, Y., Guo, L., & Cukic, B. (2007). A Statistical Framework for the

Prediction of Fault-Proneness. In Advances in Machine

Learning Applications in Software Engineering (pp. 1–26).

Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for

cross-company software defect prediction. Information and

Software Technology, 54(3), 248–256.

http://doi.org/10.1016/j.infsof.2011.09.007

Maimon, O., & Rokach, L. (2010). Data Mining and Knolwedge

Discovery Handbook Second Edition. Springer.

McDonald, M., Musson, R., & Smith, R. (2007). The practical guide

to defect prevention. Control, 260–272.

Mende, T., & Koschke, R. (2009). Revisiting the evaluation of defect

prediction models. Proceedings of the 5th International

Conference on Predictor Models in Software Engineering -

PROMISE ’09, 1. http://doi.org/10.1145/1540438.1540448

Menzies, T., DiStefano, J., Orrego, A. S., & Chapman, R. (2004).

Assessing predictors of software defects. In Proceedings of the

Workshop on Predictive Software Models.

Menzies, T., Greenwald, J., & Frank, A. (2007). Data Mining Static

Code Attributes to Learn Defect Predictors. IEEE Transactions

on Software Engineering, 33(1), 2–13.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A.

(2010). Defect prediction from static code features: current

results, limitations, new approaches. Automated Software

Engineering, 17(4), 375–407.

Mısırlı, A. T., Bener, A. B., & Turhan, B. (2011). An industrial case

study of classifier ensembles for locating software defects.

Software Quality Journal, 19(3), 515–536.

http://doi.org/10.1007/s11219-010-9128-1

Myrtveit, I., Stensrud, E., & Shepperd, M. (2005). Reliability and

validity in comparative studies of software prediction models.

IEEE Transactions on Software Engineering, 31(5), 380–391.

http://doi.org/10.1109/TSE.2005.58

Naik, K., & Tripathy, P. (2008). Software Testing and Quality

Assurance. John Wiley & Sons, Inc.

Journal of Software Engineering, Vol. 1, No. 1, April 2015 ISSN 2356-3974

Copyright © 2015 IlmuKomputer.Com 16

http://journal.ilmukomputer.org

Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the

location and number of faults in large software systems. IEEE

Transactions on Software Engineering, 31(4), 340–355.

http://doi.org/10.1109/TSE.2005.49

Park, B., Oh, S., & Pedrycz, W. (2013). The design of polynomial

function-based neural network predictors for detection of

software defects. Information Sciences, 229, 40–57.

Pelayo, L., & Dick, S. (2012). Evaluating Stratification Alternatives

to Improve Software Defect Prediction. IEEE Transactions on

Reliability, 61(2), 516–525.

http://doi.org/10.1109/TR.2012.2183912

Peng, J., & Wang, S. (2010). Parameter Selection of Support Vector

Machine based on Chaotic Particle Swarm Optimization

Algorithm. Electrical Engineering, 3271–3274.

Peng, Y., Wang, G., & Wang, H. (2012). User preferences based

software defect detection algorithms selection using MCDM.

Information Sciences, 191, 3–13.

http://doi.org/10.1016/j.ins.2010.04.019

Peters, F., Menzies, T., Gong, L., & Zhang, H. (2013). Balancing

Privacy and Utility in Cross-Company Defect Prediction. IEEE

Transactions on Software Engineering, 39(8), 1054–1068.

http://doi.org/10.1109/TSE.2013.6

Pizzi, N. J., Summers, A. R., & Pedrycz, W. (2002). Software quality

prediction using median-adjusted class labels. Proceedings of

the 2002 International Joint Conference on Neural Networks.

IJCNN’02 (Cat. No.02CH37290), (1), 2405–2409.

http://doi.org/10.1109/IJCNN.2002.1007518

Quah, T., Mie, M., Thwin, T., & Quah, T. (2003). Application of

neural networks for software quality prediction using object-

oriented metrics. International Conference on Software

Maintenance, 2003. ICSM 2003. Proceedings. IEEE Comput.

Soc.

Radjenović, D., Heričko, M., Torkar, R., & Živkovič, A. (2013,

August). Software fault prediction metrics: A systematic

literature review. Information and Software Technology.

http://doi.org/10.1016/j.infsof.2013.02.009

Sammut, C., & Webb, G. I. (2011). Encyclopedia of Machine

Learning. Springer.

Sandhu, P. S., Kumar, S., & Singh, H. (2007). Intelligence System for

Software Maintenance Severity Prediction. Journal of

Computer Science, 3(5), 281–288.

http://doi.org/10.3844/jcssp.2007.281.288

Seiffert, C., Khoshgoftaar, T. M., & Van Hulse, J. (2009). Improving

Software-Quality Predictions With Data Sampling and

Boosting. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 39(6), 1283–1294.

Seliya, N., & Khoshgoftaar, T. M. (2007). Software Quality Analysis

of Unlabeled Program Modules With Semisupervised

Clustering. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 37(2), 201–211.

http://doi.org/10.1109/TSMCA.2006.889473

Shepperd, M., Cartwright, M., & Mair, C. (2006). Software defect

association mining and defect correction effort prediction.

IEEE Transactions on Software Engineering, 32(2), 69–82.

http://doi.org/10.1109/TSE.2006.1599417

Shepperd, M., & Kadoda, G. (2001). Comparing software prediction

techniques using simulation. IEEE Transactions on Software

Engineering, 27(11), 1014–1022.

http://doi.org/10.1109/32.965341

Shepperd, M., Song, Q., Sun, Z., & Mair, C. (2013). Data Quality:

Some Comments on the NASA Software Defect Datasets.

IEEE Transactions on Software Engineering, 39(9), 1208–

1215. http://doi.org/10.1109/TSE.2013.11

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General

Software Defect-Proneness Prediction Framework. IEEE

Transactions on Software Engineering, 37(3), 356–370.

Sun, Z., Song, Q., & Zhu, X. (2012). Using Coding-Based Ensemble

Learning to Improve Software Defect Prediction. IEEE

Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 42(6), 1806–1817.

http://doi.org/10.1109/TSMCC.2012.2226152

Tosun, A., Turhan, B., & Bener, A. (2008). Ensemble of software

defect predictors. In Proceedings of the Second ACM-IEEE

international symposium on Empirical software engineering

and measurement - ESEM ’08 (p. 318). New York, New York,

USA: ACM Press. http://doi.org/10.1145/1414004.1414066

Turhan, B., Kocak, G., & Bener, A. (2009). Data mining source code

for locating software bugs: A case study in telecommunication

industry. Expert Systems with Applications, 36(6), 9986–9990.

http://doi.org/10.1016/j.eswa.2008.12.028

Turhan, B., Menzies, T., Bener, A. B., & Di Stefano, J. (2009). On the

relative value of cross-company and within-company data for

defect prediction. Empirical Software Engineering, 14(5), 540–

578. http://doi.org/10.1007/s10664-008-9103-7

Unterkalmsteiner, M., Gorschek, T., Islam, A. K. M. M. K. M. M.,

Cheng, C. K., Permadi, R. B., & Feldt, R. (2012). Evaluation

and Measurement of Software Process Improvement—A

Systematic Literature Review. IEEE Transactions on Software

Engineering, 38(2), 398–424.

http://doi.org/10.1109/TSE.2011.26

Vandecruys, O., Martens, D., Baesens, B., Mues, C., De Backer, M.,

& Haesen, R. (2008). Mining software repositories for

comprehensible software fault prediction models. Journal of

Systems and Software, 81(5), 823–839.

http://doi.org/10.1016/j.jss.2007.07.034

Wang, H., Khoshgoftaar, T. M., & Napolitano, A. (2010). A

Comparative Study of Ensemble Feature Selection Techniques

for Software Defect Prediction. 2010 Ninth International

Conference on Machine Learning and Applications, 135–140.

Wang, Q., & Yu, B. (2004). Extract rules from software quality

prediction model based on neural network. 16th IEEE

International Conference on Tools with Artificial Intelligence,

(Ictai), 191–195. http://doi.org/10.1109/ICTAI.2004.62

Wang, S., & Yao, X. (2013). Using Class Imbalance Learning for

Software Defect Prediction. IEEE Transactions on Reliability,

62(2), 434–443.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining Third

Edition. Elsevier Inc.

Wong, W. E., Debroy, V., Golden, R., Xu, X., & Thuraisingham, B.

(2012). Effective Software Fault Localization Using an RBF

Neural Network. IEEE Transactions on Reliability, 61(1), 149–

169. http://doi.org/10.1109/TR.2011.2172031

Xing, F., Guo, P., & Lyu, M. R. (2005). A Novel Method for Early

Software Quality Prediction Based on Support Vector

Machine. 16th IEEE International Symposium on Software

Reliability Engineering (ISSRE’05), 213–222.

http://doi.org/10.1109/ISSRE.2005.6

Zhang, P., & Chang, Y. (2012). Software fault prediction based on

grey neural network. In 2012 8th International Conference on

Natural Computation (pp. 466–469). IEEE.

http://doi.org/10.1109/ICNC.2012.6234505

Zheng, J. (2010). Cost-sensitive boosting neural networks for

software defect prediction. Expert Systems with Applications,

37(6), 4537–4543.

Zhou, Y., & Leung, H. (2006). Empirical Analysis of Object-Oriented

Design Metrics for Predicting High and Low Severity Faults.

IEEE Transactions on Software Engineering, 32(10), 771–789.

http://doi.org/10.1109/TSE.2006.102

BIOGRAPHY OF AUTHOR

Romi Satria Wahono. Received B.Eng and

M.Eng degrees in Computer Science

respectively from Saitama University, Japan,

and Ph.D in Software Engineering and

Machine Learning from Universiti Teknikal

Malaysia Melaka. He is a lecturer at the

Faculty of Computer Science, Dian

Nuswantoro University, Indonesia. He is also

a founder and chief executive officer of PT

Brainmatics Cipta Informatika, a software development company in

Indonesia. His current research interests include software engineering

and machine learning. Professional member of the ACM, PMI and

IEEE Computer Society.

